Properties

Label 2-3900-65.64-c1-0-38
Degree $2$
Conductor $3900$
Sign $-0.735 + 0.677i$
Analytic cond. $31.1416$
Root an. cond. $5.58047$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s − 9-s − 3.46i·11-s + (3.46 − i)13-s − 6i·17-s − 6.92i·19-s + i·27-s + 6·29-s + 6.92i·31-s − 3.46·33-s + (−1 − 3.46i)39-s + 3.46i·41-s + 8i·43-s − 3.46·47-s − 7·49-s + ⋯
L(s)  = 1  − 0.577i·3-s − 0.333·9-s − 1.04i·11-s + (0.960 − 0.277i)13-s − 1.45i·17-s − 1.58i·19-s + 0.192i·27-s + 1.11·29-s + 1.24i·31-s − 0.603·33-s + (−0.160 − 0.554i)39-s + 0.541i·41-s + 1.21i·43-s − 0.505·47-s − 49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.735 + 0.677i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.735 + 0.677i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3900\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $-0.735 + 0.677i$
Analytic conductor: \(31.1416\)
Root analytic conductor: \(5.58047\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3900} (649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3900,\ (\ :1/2),\ -0.735 + 0.677i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.564693887\)
\(L(\frac12)\) \(\approx\) \(1.564693887\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + iT \)
5 \( 1 \)
13 \( 1 + (-3.46 + i)T \)
good7 \( 1 + 7T^{2} \)
11 \( 1 + 3.46iT - 11T^{2} \)
17 \( 1 + 6iT - 17T^{2} \)
19 \( 1 + 6.92iT - 19T^{2} \)
23 \( 1 - 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 - 6.92iT - 31T^{2} \)
37 \( 1 + 37T^{2} \)
41 \( 1 - 3.46iT - 41T^{2} \)
43 \( 1 - 8iT - 43T^{2} \)
47 \( 1 + 3.46T + 47T^{2} \)
53 \( 1 - 6iT - 53T^{2} \)
59 \( 1 + 3.46iT - 59T^{2} \)
61 \( 1 - 10T + 61T^{2} \)
67 \( 1 + 13.8T + 67T^{2} \)
71 \( 1 + 10.3iT - 71T^{2} \)
73 \( 1 + 6.92T + 73T^{2} \)
79 \( 1 - 8T + 79T^{2} \)
83 \( 1 + 3.46T + 83T^{2} \)
89 \( 1 + 17.3iT - 89T^{2} \)
97 \( 1 + 6.92T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.269041162155436205672949522398, −7.42819582351023791580830954917, −6.66477566881889370227963790680, −6.15730015343935767605867360791, −5.18694071390655008379142006984, −4.54150016490284399445372877401, −3.08879456257274220730890434915, −2.91379075472169989356434571561, −1.37261442810453604633869060856, −0.47854109356097716539497021244, 1.41092564711936391122574837245, 2.29175132605864843648540662612, 3.69642084620374911562154471429, 3.96773122702289156447331810119, 4.93220220023821060361914448697, 5.87988490871039589729180518116, 6.35597828484616799314966665754, 7.33909548093529925790404889686, 8.245201591144148874609629373942, 8.586295353166945523403628278929

Graph of the $Z$-function along the critical line