L(s) = 1 | + (0.5 − 0.866i)3-s + (−3.12 + 1.80i)7-s + (−0.499 − 0.866i)9-s + (3 + 1.73i)11-s + (1 − 3.46i)13-s + (−1 − 1.73i)17-s + (−0.122 + 0.0707i)19-s + 3.60i·21-s + (3.62 − 6.27i)23-s − 0.999·27-s + (−2.62 + 4.54i)29-s + 3.46i·31-s + (3 − 1.73i)33-s + (6.24 + 3.60i)37-s + (−2.49 − 2.59i)39-s + ⋯ |
L(s) = 1 | + (0.288 − 0.499i)3-s + (−1.18 + 0.681i)7-s + (−0.166 − 0.288i)9-s + (0.904 + 0.522i)11-s + (0.277 − 0.960i)13-s + (−0.242 − 0.420i)17-s + (−0.0281 + 0.0162i)19-s + 0.786i·21-s + (0.755 − 1.30i)23-s − 0.192·27-s + (−0.486 + 0.843i)29-s + 0.622i·31-s + (0.522 − 0.301i)33-s + (1.02 + 0.592i)37-s + (−0.400 − 0.416i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.252 + 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.252 + 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.612686784\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.612686784\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-1 + 3.46i)T \) |
good | 7 | \( 1 + (3.12 - 1.80i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-3 - 1.73i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (1 + 1.73i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.122 - 0.0707i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.62 + 6.27i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.62 - 4.54i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 3.46iT - 31T^{2} \) |
| 37 | \( 1 + (-6.24 - 3.60i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (6.24 + 3.60i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.12 - 3.67i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 3.74iT - 47T^{2} \) |
| 53 | \( 1 + 3.24T + 53T^{2} \) |
| 59 | \( 1 + (-1.62 + 0.936i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.12 + 3.53i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-6.24 + 3.60i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 12.4iT - 73T^{2} \) |
| 79 | \( 1 - 8.24T + 79T^{2} \) |
| 83 | \( 1 + 5.05iT - 83T^{2} \) |
| 89 | \( 1 + (-10.6 - 6.13i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-12.2 + 7.06i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.433734364401354210739118700102, −7.52730086195527171909693098445, −6.65852694110084283871342604093, −6.40130893312840737569475171468, −5.43337145651644936142373180649, −4.52985107605234308808467850620, −3.34632605266378184913671718659, −2.91435332397011508110545355556, −1.81476195397015990036862464011, −0.52765537550494954833769815309,
1.01148987536702612976291608543, 2.29514807043844945756617553056, 3.56099765250542611599915827905, 3.74643817594934564790417892542, 4.64889425366845004493025217479, 5.83950456787539991927882425177, 6.39280564143637140176245395066, 7.10251437718662593733972826308, 7.88600548813077630359893290179, 8.883236350985597995147768407943