L(s) = 1 | + (−0.866 + 0.5i)3-s + (−1.96 + 3.40i)7-s + (0.499 − 0.866i)9-s + (−1.14 + 0.658i)11-s + (3.08 − 1.86i)13-s + (−0.478 − 0.276i)17-s + (−4.69 − 2.71i)19-s − 3.93i·21-s + (−0.411 + 0.237i)23-s + 0.999i·27-s + (−1.53 − 2.66i)29-s − 3.49i·31-s + (0.658 − 1.14i)33-s + (0.235 + 0.407i)37-s + (−1.74 + 3.15i)39-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.288i)3-s + (−0.743 + 1.28i)7-s + (0.166 − 0.288i)9-s + (−0.344 + 0.198i)11-s + (0.856 − 0.516i)13-s + (−0.116 − 0.0670i)17-s + (−1.07 − 0.622i)19-s − 0.858i·21-s + (−0.0858 + 0.0495i)23-s + 0.192i·27-s + (−0.285 − 0.495i)29-s − 0.628i·31-s + (0.114 − 0.198i)33-s + (0.0386 + 0.0669i)37-s + (−0.279 + 0.505i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.897 + 0.441i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.897 + 0.441i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9761300001\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9761300001\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.866 - 0.5i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-3.08 + 1.86i)T \) |
good | 7 | \( 1 + (1.96 - 3.40i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.14 - 0.658i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (0.478 + 0.276i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (4.69 + 2.71i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.411 - 0.237i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.53 + 2.66i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 3.49iT - 31T^{2} \) |
| 37 | \( 1 + (-0.235 - 0.407i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.53 + 1.46i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.20 + 0.697i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 7.71T + 47T^{2} \) |
| 53 | \( 1 + 3.43iT - 53T^{2} \) |
| 59 | \( 1 + (11.2 + 6.50i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.313 + 0.542i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.37 - 11.0i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (4.51 + 2.60i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 6.95T + 73T^{2} \) |
| 79 | \( 1 + 1.19T + 79T^{2} \) |
| 83 | \( 1 + 12.9T + 83T^{2} \) |
| 89 | \( 1 + (-15.5 + 8.95i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-2.62 + 4.54i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.594560346447494217187125878533, −7.74112995776490021234594940468, −6.72368113164976372002591838130, −6.05393544932087444343382815796, −5.62858916349260941342555256916, −4.71511535039560277662117010665, −3.81413088442564873105233133479, −2.86410574159207953815701885562, −2.05375582421393066993658030208, −0.40875775379940463074141771289,
0.809757677069348835836509121602, 1.85929436957316589397134807031, 3.18868420540918622278252666480, 3.97651946994675311746634602023, 4.61787712006465225976082430876, 5.79125397070996283097891116629, 6.34352817956295816265531903989, 6.98532784270855578469078037215, 7.65244663596967886341140236479, 8.475176630439162432352137890435