L(s) = 1 | + (0.866 + 0.5i)3-s + (−1.25 − 2.18i)7-s + (0.499 + 0.866i)9-s + (0.590 + 0.341i)11-s + (−1.86 + 3.08i)13-s + (4.15 − 2.39i)17-s + (−5.65 + 3.26i)19-s − 2.51i·21-s + (−6.38 − 3.68i)23-s + 0.999i·27-s + (2.31 − 4.00i)29-s + 0.600i·31-s + (0.341 + 0.590i)33-s + (5.11 − 8.85i)37-s + (−3.15 + 1.74i)39-s + ⋯ |
L(s) = 1 | + (0.499 + 0.288i)3-s + (−0.475 − 0.824i)7-s + (0.166 + 0.288i)9-s + (0.178 + 0.102i)11-s + (−0.516 + 0.856i)13-s + (1.00 − 0.581i)17-s + (−1.29 + 0.748i)19-s − 0.549i·21-s + (−1.33 − 0.768i)23-s + 0.192i·27-s + (0.429 − 0.744i)29-s + 0.107i·31-s + (0.0593 + 0.102i)33-s + (0.840 − 1.45i)37-s + (−0.505 + 0.279i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.452 + 0.891i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.452 + 0.891i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9806335776\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9806335776\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (1.86 - 3.08i)T \) |
good | 7 | \( 1 + (1.25 + 2.18i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.590 - 0.341i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-4.15 + 2.39i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (5.65 - 3.26i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (6.38 + 3.68i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.31 + 4.00i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 0.600iT - 31T^{2} \) |
| 37 | \( 1 + (-5.11 + 8.85i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1.31 + 0.758i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (6.01 - 3.47i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 4.73T + 47T^{2} \) |
| 53 | \( 1 + 10.3iT - 53T^{2} \) |
| 59 | \( 1 + (8.19 - 4.73i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5.66 + 9.80i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.20 + 3.81i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.291 + 0.168i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 4.50T + 73T^{2} \) |
| 79 | \( 1 - 9.19T + 79T^{2} \) |
| 83 | \( 1 - 10.0T + 83T^{2} \) |
| 89 | \( 1 + (11.2 + 6.51i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.60 - 7.97i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.062871911020344052841458837625, −7.70914820195487567488678822563, −6.70055383248932638522176060312, −6.22688751491823616852912442476, −5.08683836795389355660976402601, −4.13387004752419413981992526457, −3.83495670815393786230864191404, −2.64752730754933436821075862061, −1.78192940933152717353123161699, −0.25400047846197663319517796683,
1.33770681510930163874736823224, 2.46768925028397159785840439102, 3.08460193905535883102096024950, 4.00239911310648149686752087358, 5.01449430016316377298169062774, 5.92623463826615260863474468400, 6.36914570662124287823313649635, 7.38656598234719744761503212037, 8.047334040538178502347066356398, 8.631492894864398700910173150086