Properties

Label 8-3900e4-1.1-c0e4-0-9
Degree $8$
Conductor $2.313\times 10^{14}$
Sign $1$
Analytic cond. $14.3511$
Root an. cond. $1.39511$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9-s + 4·19-s − 4·31-s − 49-s + 2·61-s + 4·79-s + 4·109-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s + 4·171-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  + 9-s + 4·19-s − 4·31-s − 49-s + 2·61-s + 4·79-s + 4·109-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s + 4·171-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(14.3511\)
Root analytic conductor: \(1.39511\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.480547867\)
\(L(\frac12)\) \(\approx\) \(2.480547867\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - T^{2} + T^{4} \)
5 \( 1 \)
13$C_2^2$ \( 1 - T^{2} + T^{4} \)
good7$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
11$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
17$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
19$C_2$ \( ( 1 - T + T^{2} )^{4} \)
23$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
29$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
31$C_2$ \( ( 1 + T + T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
41$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
43$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
47$C_2$ \( ( 1 + T^{2} )^{4} \)
53$C_2$ \( ( 1 + T^{2} )^{4} \)
59$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
61$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
67$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
71$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
73$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
79$C_2$ \( ( 1 - T + T^{2} )^{4} \)
83$C_2$ \( ( 1 + T^{2} )^{4} \)
89$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
97$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.23868542212858611176200805497, −5.74791703983566884532058347046, −5.70830185504119736654106332588, −5.55350149632994990400412426483, −5.41039796952086160572971188511, −5.22456062722578984995285376400, −5.03357123568392203288749425860, −4.96447742024044496769741766194, −4.60288350498604738757894019457, −4.28460245655599157000234279068, −4.15805379428523416800960555040, −4.02266624640152278932935022076, −3.52056204233690099996045639511, −3.44837392622569684206313922335, −3.40105676053562591283743019230, −3.20757621463677904374184490553, −3.03854603575041572333902208271, −2.60312525979828824668957178513, −2.17916084578003895649845008743, −2.03874594373791569994623177968, −1.75516384687044574321441458248, −1.75017894614983997799018382633, −1.10255609849569855206010191839, −0.979051606403812022048438441215, −0.65661728146322750035283375383, 0.65661728146322750035283375383, 0.979051606403812022048438441215, 1.10255609849569855206010191839, 1.75017894614983997799018382633, 1.75516384687044574321441458248, 2.03874594373791569994623177968, 2.17916084578003895649845008743, 2.60312525979828824668957178513, 3.03854603575041572333902208271, 3.20757621463677904374184490553, 3.40105676053562591283743019230, 3.44837392622569684206313922335, 3.52056204233690099996045639511, 4.02266624640152278932935022076, 4.15805379428523416800960555040, 4.28460245655599157000234279068, 4.60288350498604738757894019457, 4.96447742024044496769741766194, 5.03357123568392203288749425860, 5.22456062722578984995285376400, 5.41039796952086160572971188511, 5.55350149632994990400412426483, 5.70830185504119736654106332588, 5.74791703983566884532058347046, 6.23868542212858611176200805497

Graph of the $Z$-function along the critical line