Properties

Label 2-390-1.1-c7-0-13
Degree $2$
Conductor $390$
Sign $1$
Analytic cond. $121.830$
Root an. cond. $11.0376$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 27·3-s + 64·4-s − 125·5-s − 216·6-s + 1.80e3·7-s − 512·8-s + 729·9-s + 1.00e3·10-s − 6.71e3·11-s + 1.72e3·12-s + 2.19e3·13-s − 1.44e4·14-s − 3.37e3·15-s + 4.09e3·16-s − 3.47e4·17-s − 5.83e3·18-s − 1.74e4·19-s − 8.00e3·20-s + 4.88e4·21-s + 5.37e4·22-s + 7.44e4·23-s − 1.38e4·24-s + 1.56e4·25-s − 1.75e4·26-s + 1.96e4·27-s + 1.15e5·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 0.5·4-s − 0.447·5-s − 0.408·6-s + 1.99·7-s − 0.353·8-s + 0.333·9-s + 0.316·10-s − 1.52·11-s + 0.288·12-s + 0.277·13-s − 1.40·14-s − 0.258·15-s + 0.250·16-s − 1.71·17-s − 0.235·18-s − 0.582·19-s − 0.223·20-s + 1.15·21-s + 1.07·22-s + 1.27·23-s − 0.204·24-s + 0.199·25-s − 0.196·26-s + 0.192·27-s + 0.996·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(390\)    =    \(2 \cdot 3 \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(121.830\)
Root analytic conductor: \(11.0376\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 390,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(2.058764659\)
\(L(\frac12)\) \(\approx\) \(2.058764659\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
3 \( 1 - 27T \)
5 \( 1 + 125T \)
13 \( 1 - 2.19e3T \)
good7 \( 1 - 1.80e3T + 8.23e5T^{2} \)
11 \( 1 + 6.71e3T + 1.94e7T^{2} \)
17 \( 1 + 3.47e4T + 4.10e8T^{2} \)
19 \( 1 + 1.74e4T + 8.93e8T^{2} \)
23 \( 1 - 7.44e4T + 3.40e9T^{2} \)
29 \( 1 - 9.36e4T + 1.72e10T^{2} \)
31 \( 1 - 1.91e5T + 2.75e10T^{2} \)
37 \( 1 - 2.54e5T + 9.49e10T^{2} \)
41 \( 1 + 3.31e5T + 1.94e11T^{2} \)
43 \( 1 + 1.31e5T + 2.71e11T^{2} \)
47 \( 1 + 6.72e4T + 5.06e11T^{2} \)
53 \( 1 + 8.29e5T + 1.17e12T^{2} \)
59 \( 1 + 4.84e5T + 2.48e12T^{2} \)
61 \( 1 - 1.34e6T + 3.14e12T^{2} \)
67 \( 1 - 3.69e6T + 6.06e12T^{2} \)
71 \( 1 - 4.85e6T + 9.09e12T^{2} \)
73 \( 1 + 1.78e6T + 1.10e13T^{2} \)
79 \( 1 + 7.90e6T + 1.92e13T^{2} \)
83 \( 1 - 8.11e5T + 2.71e13T^{2} \)
89 \( 1 - 6.85e6T + 4.42e13T^{2} \)
97 \( 1 + 7.88e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.25441090472124212883839450104, −8.807293390187757248977616511046, −8.322887663663537748676153500268, −7.74966945332414190343104922761, −6.72123888946138557177447599762, −5.07947308732669513788747130464, −4.41818337738055553481353198688, −2.73141530930218037426250924125, −1.93588307609605089082271684642, −0.71981489524509914712082610984, 0.71981489524509914712082610984, 1.93588307609605089082271684642, 2.73141530930218037426250924125, 4.41818337738055553481353198688, 5.07947308732669513788747130464, 6.72123888946138557177447599762, 7.74966945332414190343104922761, 8.322887663663537748676153500268, 8.807293390187757248977616511046, 10.25441090472124212883839450104

Graph of the $Z$-function along the critical line