| L(s) = 1 | + (0.0868 − 0.0868i)2-s + 5.19·3-s + 15.9i·4-s + (−14.6 + 14.6i)5-s + (0.451 − 0.451i)6-s + (21.4 + 21.4i)7-s + (2.77 + 2.77i)8-s + 27·9-s + 2.53i·10-s + (21.6 + 21.6i)11-s + 83.0i·12-s + (134. + 102. i)13-s + 3.73·14-s + (−75.9 + 75.9i)15-s − 255.·16-s − 251. i·17-s + ⋯ |
| L(s) = 1 | + (0.0217 − 0.0217i)2-s + 0.577·3-s + 0.999i·4-s + (−0.584 + 0.584i)5-s + (0.0125 − 0.0125i)6-s + (0.438 + 0.438i)7-s + (0.0434 + 0.0434i)8-s + 0.333·9-s + 0.0253i·10-s + (0.179 + 0.179i)11-s + 0.576i·12-s + (0.795 + 0.605i)13-s + 0.0190·14-s + (−0.337 + 0.337i)15-s − 0.997·16-s − 0.871i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 39 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.348 - 0.937i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 39 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.348 - 0.937i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{5}{2})\) |
\(\approx\) |
\(1.35302 + 0.940244i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.35302 + 0.940244i\) |
| \(L(3)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 - 5.19T \) |
| 13 | \( 1 + (-134. - 102. i)T \) |
| good | 2 | \( 1 + (-0.0868 + 0.0868i)T - 16iT^{2} \) |
| 5 | \( 1 + (14.6 - 14.6i)T - 625iT^{2} \) |
| 7 | \( 1 + (-21.4 - 21.4i)T + 2.40e3iT^{2} \) |
| 11 | \( 1 + (-21.6 - 21.6i)T + 1.46e4iT^{2} \) |
| 17 | \( 1 + 251. iT - 8.35e4T^{2} \) |
| 19 | \( 1 + (-133. + 133. i)T - 1.30e5iT^{2} \) |
| 23 | \( 1 + 1.02e3iT - 2.79e5T^{2} \) |
| 29 | \( 1 + 479.T + 7.07e5T^{2} \) |
| 31 | \( 1 + (-359. + 359. i)T - 9.23e5iT^{2} \) |
| 37 | \( 1 + (-1.22e3 - 1.22e3i)T + 1.87e6iT^{2} \) |
| 41 | \( 1 + (-381. + 381. i)T - 2.82e6iT^{2} \) |
| 43 | \( 1 - 356. iT - 3.41e6T^{2} \) |
| 47 | \( 1 + (-2.00e3 - 2.00e3i)T + 4.87e6iT^{2} \) |
| 53 | \( 1 - 1.71e3T + 7.89e6T^{2} \) |
| 59 | \( 1 + (232. + 232. i)T + 1.21e7iT^{2} \) |
| 61 | \( 1 + 1.45e3T + 1.38e7T^{2} \) |
| 67 | \( 1 + (-4.50e3 + 4.50e3i)T - 2.01e7iT^{2} \) |
| 71 | \( 1 + (4.29e3 - 4.29e3i)T - 2.54e7iT^{2} \) |
| 73 | \( 1 + (6.22e3 + 6.22e3i)T + 2.83e7iT^{2} \) |
| 79 | \( 1 + 321.T + 3.89e7T^{2} \) |
| 83 | \( 1 + (8.93e3 - 8.93e3i)T - 4.74e7iT^{2} \) |
| 89 | \( 1 + (-5.66e3 - 5.66e3i)T + 6.27e7iT^{2} \) |
| 97 | \( 1 + (3.99e3 - 3.99e3i)T - 8.85e7iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.66115915149284555370334502657, −14.54971757133000439068174204341, −13.38000834006096860564412880471, −12.03522110395902142172404974694, −11.11600276336256012567801257159, −9.140720652017813243236583735731, −8.062036568779736537048369583420, −6.87811751329199377455761564488, −4.27155658081843551028971862461, −2.74835389256305901921531214828,
1.23955271604401816564576673670, 4.00161297352528506863309227174, 5.70620429260033443653070208152, 7.64947798495812653899538525312, 8.891895497767368562166555866924, 10.28326658885216563860789137543, 11.48541575336187640964691707583, 13.12137926336013072495884417515, 14.14481805702882359206635249090, 15.23532702175286788063731785175