Properties

Label 4-3888e2-1.1-c0e2-0-4
Degree $4$
Conductor $15116544$
Sign $1$
Analytic cond. $3.76501$
Root an. cond. $1.39296$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s + 13-s + 2·19-s − 25-s − 31-s − 2·37-s − 43-s + 49-s − 2·61-s + 2·67-s + 4·73-s − 79-s − 91-s + 97-s + 2·103-s − 2·109-s − 121-s + 127-s + 131-s − 2·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  − 7-s + 13-s + 2·19-s − 25-s − 31-s − 2·37-s − 43-s + 49-s − 2·61-s + 2·67-s + 4·73-s − 79-s − 91-s + 97-s + 2·103-s − 2·109-s − 121-s + 127-s + 131-s − 2·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15116544 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15116544 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(15116544\)    =    \(2^{8} \cdot 3^{10}\)
Sign: $1$
Analytic conductor: \(3.76501\)
Root analytic conductor: \(1.39296\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 15116544,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.212306074\)
\(L(\frac12)\) \(\approx\) \(1.212306074\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
7$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
13$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
19$C_2$ \( ( 1 - T + T^{2} )^{2} \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
37$C_2$ \( ( 1 + T + T^{2} )^{2} \)
41$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
43$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_2$ \( ( 1 + T + T^{2} )^{2} \)
67$C_2$ \( ( 1 - T + T^{2} )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_1$ \( ( 1 - T )^{4} \)
79$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
83$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.980177196290143487410343203653, −8.383425250371679590128339218722, −8.128441769831750052329624621417, −7.77043859861092085855016103749, −7.30765894782515548628259682330, −7.01398711546286259889967550137, −6.59898023699639261704861621067, −6.37512245650464579707290698259, −5.79287516743115991158820811607, −5.48358678502840003075907564065, −5.26239289418991322148119519497, −4.77050863031717543542470864829, −4.15445272236049058160870298784, −3.59495940266099585622214047600, −3.38431467171193575856942967678, −3.30922268522972033803942796841, −2.46597038865698302987806999806, −1.92326625045395425495221303817, −1.43065309357237211288843853213, −0.64626785648921485680534815043, 0.64626785648921485680534815043, 1.43065309357237211288843853213, 1.92326625045395425495221303817, 2.46597038865698302987806999806, 3.30922268522972033803942796841, 3.38431467171193575856942967678, 3.59495940266099585622214047600, 4.15445272236049058160870298784, 4.77050863031717543542470864829, 5.26239289418991322148119519497, 5.48358678502840003075907564065, 5.79287516743115991158820811607, 6.37512245650464579707290698259, 6.59898023699639261704861621067, 7.01398711546286259889967550137, 7.30765894782515548628259682330, 7.77043859861092085855016103749, 8.128441769831750052329624621417, 8.383425250371679590128339218722, 8.980177196290143487410343203653

Graph of the $Z$-function along the critical line