Properties

Label 4-3888e2-1.1-c0e2-0-7
Degree $4$
Conductor $15116544$
Sign $1$
Analytic cond. $3.76501$
Root an. cond. $1.39296$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·7-s + 2·13-s + 25-s + 3·31-s − 2·37-s + 3·43-s + 5·49-s + 61-s + 3·67-s + 2·73-s − 6·91-s + 2·97-s − 3·103-s + 2·109-s − 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s + 173-s − 3·175-s + ⋯
L(s)  = 1  − 3·7-s + 2·13-s + 25-s + 3·31-s − 2·37-s + 3·43-s + 5·49-s + 61-s + 3·67-s + 2·73-s − 6·91-s + 2·97-s − 3·103-s + 2·109-s − 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s + 173-s − 3·175-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15116544 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15116544 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(15116544\)    =    \(2^{8} \cdot 3^{10}\)
Sign: $1$
Analytic conductor: \(3.76501\)
Root analytic conductor: \(1.39296\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 15116544,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.236836756\)
\(L(\frac12)\) \(\approx\) \(1.236836756\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( 1 - T^{2} + T^{4} \)
7$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
13$C_2$ \( ( 1 - T + T^{2} )^{2} \)
17$C_2$ \( ( 1 + T^{2} )^{2} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_2^2$ \( 1 - T^{2} + T^{4} \)
31$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
37$C_2$ \( ( 1 + T + T^{2} )^{2} \)
41$C_2^2$ \( 1 - T^{2} + T^{4} \)
43$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_2$ \( ( 1 + T^{2} )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
67$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_2$ \( ( 1 - T + T^{2} )^{2} \)
79$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
83$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
89$C_2$ \( ( 1 + T^{2} )^{2} \)
97$C_2$ \( ( 1 - T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.724462949810673403297307668936, −8.702877284728050058747689794089, −8.103745366275860782080250283309, −7.897092670168725190807200455329, −7.07239592447533887768093004535, −6.87313905309341377822002747553, −6.55707343940855613197475359219, −6.41855240996943048222842169617, −5.97047825872641130853218933187, −5.68886278334389292373831424057, −5.21697786526327794730513257427, −4.61328014363655551597136191387, −4.01775139991821207683535937787, −3.80603310195016664122215192452, −3.30592738899883602610862650808, −3.17965225083913818140546369184, −2.52842567183140256887380358063, −2.24074128708659151087413854058, −0.923950363691241952173422111122, −0.882913938507464484612179626193, 0.882913938507464484612179626193, 0.923950363691241952173422111122, 2.24074128708659151087413854058, 2.52842567183140256887380358063, 3.17965225083913818140546369184, 3.30592738899883602610862650808, 3.80603310195016664122215192452, 4.01775139991821207683535937787, 4.61328014363655551597136191387, 5.21697786526327794730513257427, 5.68886278334389292373831424057, 5.97047825872641130853218933187, 6.41855240996943048222842169617, 6.55707343940855613197475359219, 6.87313905309341377822002747553, 7.07239592447533887768093004535, 7.897092670168725190807200455329, 8.103745366275860782080250283309, 8.702877284728050058747689794089, 8.724462949810673403297307668936

Graph of the $Z$-function along the critical line