Properties

Label 2-387-1.1-c7-0-89
Degree $2$
Conductor $387$
Sign $-1$
Analytic cond. $120.893$
Root an. cond. $10.9951$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12.5·2-s + 28.4·4-s − 71.4·5-s + 1.02e3·7-s + 1.24e3·8-s + 893.·10-s + 5.74e3·11-s + 6.11e3·13-s − 1.27e4·14-s − 1.92e4·16-s − 2.12e4·17-s − 2.27e4·19-s − 2.03e3·20-s − 7.18e4·22-s + 4.68e4·23-s − 7.30e4·25-s − 7.65e4·26-s + 2.90e4·28-s − 2.21e5·29-s − 3.43e3·31-s + 8.09e4·32-s + 2.65e5·34-s − 7.28e4·35-s − 2.38e5·37-s + 2.84e5·38-s − 8.89e4·40-s + 5.53e5·41-s + ⋯
L(s)  = 1  − 1.10·2-s + 0.222·4-s − 0.255·5-s + 1.12·7-s + 0.859·8-s + 0.282·10-s + 1.30·11-s + 0.772·13-s − 1.24·14-s − 1.17·16-s − 1.04·17-s − 0.760·19-s − 0.0567·20-s − 1.43·22-s + 0.803·23-s − 0.934·25-s − 0.853·26-s + 0.249·28-s − 1.68·29-s − 0.0207·31-s + 0.436·32-s + 1.15·34-s − 0.287·35-s − 0.775·37-s + 0.840·38-s − 0.219·40-s + 1.25·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 387 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 387 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(387\)    =    \(3^{2} \cdot 43\)
Sign: $-1$
Analytic conductor: \(120.893\)
Root analytic conductor: \(10.9951\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 387,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
43 \( 1 - 7.95e4T \)
good2 \( 1 + 12.5T + 128T^{2} \)
5 \( 1 + 71.4T + 7.81e4T^{2} \)
7 \( 1 - 1.02e3T + 8.23e5T^{2} \)
11 \( 1 - 5.74e3T + 1.94e7T^{2} \)
13 \( 1 - 6.11e3T + 6.27e7T^{2} \)
17 \( 1 + 2.12e4T + 4.10e8T^{2} \)
19 \( 1 + 2.27e4T + 8.93e8T^{2} \)
23 \( 1 - 4.68e4T + 3.40e9T^{2} \)
29 \( 1 + 2.21e5T + 1.72e10T^{2} \)
31 \( 1 + 3.43e3T + 2.75e10T^{2} \)
37 \( 1 + 2.38e5T + 9.49e10T^{2} \)
41 \( 1 - 5.53e5T + 1.94e11T^{2} \)
47 \( 1 - 1.20e6T + 5.06e11T^{2} \)
53 \( 1 + 5.67e5T + 1.17e12T^{2} \)
59 \( 1 + 2.17e6T + 2.48e12T^{2} \)
61 \( 1 + 3.28e6T + 3.14e12T^{2} \)
67 \( 1 + 2.64e6T + 6.06e12T^{2} \)
71 \( 1 + 2.25e6T + 9.09e12T^{2} \)
73 \( 1 - 5.60e6T + 1.10e13T^{2} \)
79 \( 1 + 3.15e6T + 1.92e13T^{2} \)
83 \( 1 - 8.03e5T + 2.71e13T^{2} \)
89 \( 1 - 1.12e7T + 4.42e13T^{2} \)
97 \( 1 - 1.33e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.213033247489703771135015918791, −9.001977592797067027676737963904, −7.993016404882878947131928663316, −7.22103327267403443927803159713, −6.05718315783038086768834473650, −4.60325336642073083119002744283, −3.90233030517937669502403006570, −1.95199799975233247867414827668, −1.24110465153047932436082249546, 0, 1.24110465153047932436082249546, 1.95199799975233247867414827668, 3.90233030517937669502403006570, 4.60325336642073083119002744283, 6.05718315783038086768834473650, 7.22103327267403443927803159713, 7.993016404882878947131928663316, 9.001977592797067027676737963904, 9.213033247489703771135015918791

Graph of the $Z$-function along the critical line