Properties

Label 2-3850-5.4-c1-0-43
Degree $2$
Conductor $3850$
Sign $0.447 + 0.894i$
Analytic cond. $30.7424$
Root an. cond. $5.54458$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 0.732i·3-s − 4-s − 0.732·6-s i·7-s + i·8-s + 2.46·9-s + 11-s + 0.732i·12-s + 5.46i·13-s − 14-s + 16-s − 3.46i·17-s − 2.46i·18-s − 3.26·19-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.422i·3-s − 0.5·4-s − 0.298·6-s − 0.377i·7-s + 0.353i·8-s + 0.821·9-s + 0.301·11-s + 0.211i·12-s + 1.51i·13-s − 0.267·14-s + 0.250·16-s − 0.840i·17-s − 0.580i·18-s − 0.749·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3850\)    =    \(2 \cdot 5^{2} \cdot 7 \cdot 11\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(30.7424\)
Root analytic conductor: \(5.54458\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3850} (1849, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3850,\ (\ :1/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.919225781\)
\(L(\frac12)\) \(\approx\) \(1.919225781\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
5 \( 1 \)
7 \( 1 + iT \)
11 \( 1 - T \)
good3 \( 1 + 0.732iT - 3T^{2} \)
13 \( 1 - 5.46iT - 13T^{2} \)
17 \( 1 + 3.46iT - 17T^{2} \)
19 \( 1 + 3.26T + 19T^{2} \)
23 \( 1 - 2.19iT - 23T^{2} \)
29 \( 1 - 1.26T + 29T^{2} \)
31 \( 1 - 2T + 31T^{2} \)
37 \( 1 - 2.73iT - 37T^{2} \)
41 \( 1 - 8.19T + 41T^{2} \)
43 \( 1 - 2iT - 43T^{2} \)
47 \( 1 - 6.92iT - 47T^{2} \)
53 \( 1 + 10.7iT - 53T^{2} \)
59 \( 1 - 6.92T + 59T^{2} \)
61 \( 1 - 8.92T + 61T^{2} \)
67 \( 1 - 4iT - 67T^{2} \)
71 \( 1 - 2.53T + 71T^{2} \)
73 \( 1 - 6.39iT - 73T^{2} \)
79 \( 1 - 1.80T + 79T^{2} \)
83 \( 1 - 4.39iT - 83T^{2} \)
89 \( 1 - 3.46T + 89T^{2} \)
97 \( 1 - 16.5iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.420269925523828982531408119555, −7.60294514490307719085641529587, −6.84006966315336484608424711259, −6.38540565282758730202714169568, −5.12706148188751085476362854655, −4.31900031461649680438315607664, −3.86065932318026988272113766546, −2.59252605085204713946045447605, −1.77716866454394280728398949340, −0.865374769396671347688845271207, 0.792041507876167824447267010982, 2.19029512059966163251576509320, 3.38668970942343803645993342607, 4.15193840301951543148447999558, 4.88535195895370744197774625630, 5.73855956595184080468036570108, 6.29631056636058699015013505278, 7.18984796341574089602096119853, 7.88203138628537732847063092961, 8.575445103908399854081555647646

Graph of the $Z$-function along the critical line