L(s) = 1 | + (−2.12 − 2.12i)3-s + (−0.706 + 0.706i)5-s + 4.44i·7-s + 8.99i·9-s + (17.7 − 17.7i)11-s + (17.7 + 17.7i)13-s + 2.99·15-s − 105.·17-s + (−40.2 − 40.2i)19-s + (9.42 − 9.42i)21-s + 42.9i·23-s + 124. i·25-s + (19.0 − 19.0i)27-s + (185. + 185. i)29-s + 291.·31-s + ⋯ |
L(s) = 1 | + (−0.408 − 0.408i)3-s + (−0.0631 + 0.0631i)5-s + 0.239i·7-s + 0.333i·9-s + (0.485 − 0.485i)11-s + (0.377 + 0.377i)13-s + 0.0516·15-s − 1.50·17-s + (−0.486 − 0.486i)19-s + (0.0978 − 0.0978i)21-s + 0.389i·23-s + 0.992i·25-s + (0.136 − 0.136i)27-s + (1.18 + 1.18i)29-s + 1.68·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.696 - 0.717i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.696 - 0.717i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.351942966\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.351942966\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (2.12 + 2.12i)T \) |
good | 5 | \( 1 + (0.706 - 0.706i)T - 125iT^{2} \) |
| 7 | \( 1 - 4.44iT - 343T^{2} \) |
| 11 | \( 1 + (-17.7 + 17.7i)T - 1.33e3iT^{2} \) |
| 13 | \( 1 + (-17.7 - 17.7i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 + 105.T + 4.91e3T^{2} \) |
| 19 | \( 1 + (40.2 + 40.2i)T + 6.85e3iT^{2} \) |
| 23 | \( 1 - 42.9iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (-185. - 185. i)T + 2.43e4iT^{2} \) |
| 31 | \( 1 - 291.T + 2.97e4T^{2} \) |
| 37 | \( 1 + (151. - 151. i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 + 60.3iT - 6.89e4T^{2} \) |
| 43 | \( 1 + (120. - 120. i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 - 500.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (192. - 192. i)T - 1.48e5iT^{2} \) |
| 59 | \( 1 + (-500. + 500. i)T - 2.05e5iT^{2} \) |
| 61 | \( 1 + (-166. - 166. i)T + 2.26e5iT^{2} \) |
| 67 | \( 1 + (-575. - 575. i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 - 457. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 1.08e3iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 544.T + 4.93e5T^{2} \) |
| 83 | \( 1 + (48.6 + 48.6i)T + 5.71e5iT^{2} \) |
| 89 | \( 1 + 43.6iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 690.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.23040030818508390154887588662, −10.28269619456180592504330430295, −8.968018046406244119256443723761, −8.438021136232237137507525084899, −6.95992538028416343788925081002, −6.46610073180951203564437787334, −5.24414931315363161535495914882, −4.10311749672839333156181751114, −2.60818976807497724483600534059, −1.13391508816204614964635711620,
0.56896733034769752911647824158, 2.35684463954149462662430305478, 4.01920128657025663166255076672, 4.67436195273425814353719700768, 6.11659456556549885351829514358, 6.77401507540302414905066815002, 8.155397314603452779981096673058, 8.947767776207527817246175202202, 10.12771270903553454012410365122, 10.63176123108243624000717213183