| L(s) = 1 | − 2·9-s − 8·17-s + 4·25-s + 40·41-s − 12·49-s − 8·73-s + 3·81-s + 24·89-s + 56·97-s + 8·113-s + 12·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 16·153-s + 157-s + 163-s + 167-s − 12·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
| L(s) = 1 | − 2/3·9-s − 1.94·17-s + 4/5·25-s + 6.24·41-s − 1.71·49-s − 0.936·73-s + 1/3·81-s + 2.54·89-s + 5.68·97-s + 0.752·113-s + 1.09·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 1.29·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.923·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.849726689\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.849726689\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
|---|
| bad | 2 | | \( 1 \) | |
| 3 | $C_2$ | \( ( 1 + T^{2} )^{2} \) | |
| good | 5 | $C_2^2$ | \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \) | 4.5.a_ae_a_cc |
| 7 | $C_2^2$ | \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \) | 4.7.a_m_a_fe |
| 11 | $C_2^2$ | \( ( 1 - 6 T^{2} + p^{2} T^{4} )^{2} \) | 4.11.a_am_a_ks |
| 13 | $C_2^2$ | \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \) | 4.13.a_m_a_ok |
| 17 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{4} \) | 4.17.i_do_qy_dus |
| 19 | $C_2^2$ | \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \) | 4.19.a_abs_a_buk |
| 23 | $C_2^2$ | \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \) | 4.23.a_bc_a_bwg |
| 29 | $C_2^2$ | \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \) | 4.29.a_adw_a_gew |
| 31 | $C_2^2$ | \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \) | 4.31.a_au_a_czu |
| 37 | $C_2$ | \( ( 1 - p T^{2} )^{4} \) | 4.37.a_afs_a_mdy |
| 41 | $C_2$ | \( ( 1 - 10 T + p T^{2} )^{4} \) | 4.41.abo_bdk_anfc_dymw |
| 43 | $C_2^2$ | \( ( 1 + 58 T^{2} + p^{2} T^{4} )^{2} \) | 4.43.a_em_a_klq |
| 47 | $C_2^2$ | \( ( 1 + 62 T^{2} + p^{2} T^{4} )^{2} \) | 4.47.a_eu_a_mfu |
| 53 | $C_2^2$ | \( ( 1 - 98 T^{2} + p^{2} T^{4} )^{2} \) | 4.53.a_aho_a_wnm |
| 59 | $C_2^2$ | \( ( 1 - 102 T^{2} + p^{2} T^{4} )^{2} \) | 4.59.a_ahw_a_zry |
| 61 | $C_2^2$ | \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \) | 4.61.a_m_a_lbq |
| 67 | $C_2^2$ | \( ( 1 - 118 T^{2} + p^{2} T^{4} )^{2} \) | 4.67.a_ajc_a_bhww |
| 71 | $C_2^2$ | \( ( 1 + 110 T^{2} + p^{2} T^{4} )^{2} \) | 4.71.a_im_a_bgve |
| 73 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{4} \) | 4.73.i_me_cqq_cane |
| 79 | $C_2^2$ | \( ( 1 + 86 T^{2} + p^{2} T^{4} )^{2} \) | 4.79.a_gq_a_bdko |
| 83 | $C_2^2$ | \( ( 1 - 150 T^{2} + p^{2} T^{4} )^{2} \) | 4.83.a_alo_a_cbri |
| 89 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{4} \) | 4.89.ay_wa_akts_ezco |
| 97 | $C_2$ | \( ( 1 - 14 T + p T^{2} )^{4} \) | 4.97.ace_cie_aboiy_sjvq |
| show more | | |
| show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.049838974768667062494455871664, −7.955343462929157905281491771570, −7.78189179184266387615888390757, −7.51160963545188632611326604934, −7.31227510997071894143389406489, −6.94803412047455459878481713307, −6.73331959112034251565986066026, −6.26814282724700982845983465206, −6.26220373076718752600619059946, −5.89665677343569916421534970387, −5.89445475670083262665834723464, −5.42757163728111299870223051784, −5.05460623651132301736697090399, −4.59014808961757648683749422747, −4.51608294301034087429074745230, −4.46856019048839960304531083966, −4.01576280278593421328541002766, −3.52284000970033550234053273583, −3.19584874368916845285221376212, −3.01250857646344909223200469975, −2.40438796828212904038147726604, −2.12688548092163566730867907666, −2.11078420427884692762323138139, −1.02510739554723904828571736839, −0.63161969456271573036383893493,
0.63161969456271573036383893493, 1.02510739554723904828571736839, 2.11078420427884692762323138139, 2.12688548092163566730867907666, 2.40438796828212904038147726604, 3.01250857646344909223200469975, 3.19584874368916845285221376212, 3.52284000970033550234053273583, 4.01576280278593421328541002766, 4.46856019048839960304531083966, 4.51608294301034087429074745230, 4.59014808961757648683749422747, 5.05460623651132301736697090399, 5.42757163728111299870223051784, 5.89445475670083262665834723464, 5.89665677343569916421534970387, 6.26220373076718752600619059946, 6.26814282724700982845983465206, 6.73331959112034251565986066026, 6.94803412047455459878481713307, 7.31227510997071894143389406489, 7.51160963545188632611326604934, 7.78189179184266387615888390757, 7.955343462929157905281491771570, 8.049838974768667062494455871664