Properties

Label 2-3825-1.1-c1-0-17
Degree $2$
Conductor $3825$
Sign $1$
Analytic cond. $30.5427$
Root an. cond. $5.52655$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.329·2-s − 1.89·4-s − 2.26·7-s + 1.28·8-s + 1.59·11-s + 3.85·13-s + 0.746·14-s + 3.35·16-s − 17-s − 2.50·19-s − 0.524·22-s − 0.0656·23-s − 1.27·26-s + 4.27·28-s − 9.23·29-s + 2.34·31-s − 3.67·32-s + 0.329·34-s + 4.48·37-s + 0.825·38-s + 0.635·41-s − 4.07·43-s − 3.00·44-s + 0.0216·46-s + 2.43·47-s − 1.88·49-s − 7.28·52-s + ⋯
L(s)  = 1  − 0.233·2-s − 0.945·4-s − 0.855·7-s + 0.453·8-s + 0.479·11-s + 1.06·13-s + 0.199·14-s + 0.839·16-s − 0.242·17-s − 0.574·19-s − 0.111·22-s − 0.0136·23-s − 0.249·26-s + 0.808·28-s − 1.71·29-s + 0.421·31-s − 0.649·32-s + 0.0565·34-s + 0.737·37-s + 0.133·38-s + 0.0992·41-s − 0.621·43-s − 0.453·44-s + 0.00319·46-s + 0.355·47-s − 0.268·49-s − 1.01·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3825 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3825\)    =    \(3^{2} \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(30.5427\)
Root analytic conductor: \(5.52655\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3825,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.007410752\)
\(L(\frac12)\) \(\approx\) \(1.007410752\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
17 \( 1 + T \)
good2 \( 1 + 0.329T + 2T^{2} \)
7 \( 1 + 2.26T + 7T^{2} \)
11 \( 1 - 1.59T + 11T^{2} \)
13 \( 1 - 3.85T + 13T^{2} \)
19 \( 1 + 2.50T + 19T^{2} \)
23 \( 1 + 0.0656T + 23T^{2} \)
29 \( 1 + 9.23T + 29T^{2} \)
31 \( 1 - 2.34T + 31T^{2} \)
37 \( 1 - 4.48T + 37T^{2} \)
41 \( 1 - 0.635T + 41T^{2} \)
43 \( 1 + 4.07T + 43T^{2} \)
47 \( 1 - 2.43T + 47T^{2} \)
53 \( 1 - 3.09T + 53T^{2} \)
59 \( 1 - 13.7T + 59T^{2} \)
61 \( 1 + 1.22T + 61T^{2} \)
67 \( 1 + 9.19T + 67T^{2} \)
71 \( 1 + 5.79T + 71T^{2} \)
73 \( 1 + 10.2T + 73T^{2} \)
79 \( 1 + 5.88T + 79T^{2} \)
83 \( 1 - 15.5T + 83T^{2} \)
89 \( 1 - 0.221T + 89T^{2} \)
97 \( 1 - 14.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.728971521115228914775020998143, −7.88616315062681000112958748297, −7.04545717735623835856241565376, −6.18038449939613986117386034951, −5.65269004350018145854745185935, −4.53893883638924190586974052511, −3.88097367040457493019378144209, −3.20726152587279443102433722252, −1.81433296368296894766285372251, −0.61270964215936419525305071891, 0.61270964215936419525305071891, 1.81433296368296894766285372251, 3.20726152587279443102433722252, 3.88097367040457493019378144209, 4.53893883638924190586974052511, 5.65269004350018145854745185935, 6.18038449939613986117386034951, 7.04545717735623835856241565376, 7.88616315062681000112958748297, 8.728971521115228914775020998143

Graph of the $Z$-function along the critical line