Properties

Label 2-3822-13.12-c1-0-69
Degree $2$
Conductor $3822$
Sign $0.936 + 0.349i$
Analytic cond. $30.5188$
Root an. cond. $5.52438$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s + 3-s − 4-s − 2.26i·5-s + i·6-s i·8-s + 9-s + 2.26·10-s + 1.26i·11-s − 12-s + (−1.26 + 3.37i)13-s − 2.26i·15-s + 16-s + 0.377·17-s + i·18-s − 7.75i·19-s + ⋯
L(s)  = 1  + 0.707i·2-s + 0.577·3-s − 0.5·4-s − 1.01i·5-s + 0.408i·6-s − 0.353i·8-s + 0.333·9-s + 0.715·10-s + 0.380i·11-s − 0.288·12-s + (−0.349 + 0.936i)13-s − 0.583i·15-s + 0.250·16-s + 0.0915·17-s + 0.235i·18-s − 1.77i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3822 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.936 + 0.349i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3822 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.936 + 0.349i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3822\)    =    \(2 \cdot 3 \cdot 7^{2} \cdot 13\)
Sign: $0.936 + 0.349i$
Analytic conductor: \(30.5188\)
Root analytic conductor: \(5.52438\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3822} (883, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3822,\ (\ :1/2),\ 0.936 + 0.349i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.061064728\)
\(L(\frac12)\) \(\approx\) \(2.061064728\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 - T \)
7 \( 1 \)
13 \( 1 + (1.26 - 3.37i)T \)
good5 \( 1 + 2.26iT - 5T^{2} \)
11 \( 1 - 1.26iT - 11T^{2} \)
17 \( 1 - 0.377T + 17T^{2} \)
19 \( 1 + 7.75iT - 19T^{2} \)
23 \( 1 - 4.49T + 23T^{2} \)
29 \( 1 + 2.40T + 29T^{2} \)
31 \( 1 - 4iT - 31T^{2} \)
37 \( 1 + 3.37iT - 37T^{2} \)
41 \( 1 + 9.90iT - 41T^{2} \)
43 \( 1 - 8.75T + 43T^{2} \)
47 \( 1 - 3.29iT - 47T^{2} \)
53 \( 1 - 3T + 53T^{2} \)
59 \( 1 + 4.66iT - 59T^{2} \)
61 \( 1 + 8.90T + 61T^{2} \)
67 \( 1 - 1.29iT - 67T^{2} \)
71 \( 1 - 4.11iT - 71T^{2} \)
73 \( 1 + 9.54iT - 73T^{2} \)
79 \( 1 + 6.29T + 79T^{2} \)
83 \( 1 + 6.39iT - 83T^{2} \)
89 \( 1 + 11.3iT - 89T^{2} \)
97 \( 1 - 8.03iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.767668678578858871754935721887, −7.48031696555652127143518798648, −7.24538125370882803953165628102, −6.36446210184708581346921807832, −5.27089329707637062440312392943, −4.73376244657454827494585023308, −4.13002818986707835171419699312, −2.95323755104187274266227755803, −1.87044353664246547875098029223, −0.63736043820575761040223639318, 1.09309159503768249338593532093, 2.28308034938824237941834987359, 3.06158194969221604971613049908, 3.53573228931598763207853081305, 4.51331050064834871360007311724, 5.58146931772949346390551895581, 6.24480375614693852334854136991, 7.30615157569567011529621318113, 7.84268563736879827889252654360, 8.526987094865977716156709761424

Graph of the $Z$-function along the critical line