Properties

Label 2-3822-13.12-c1-0-1
Degree $2$
Conductor $3822$
Sign $0.387 + 0.921i$
Analytic cond. $30.5188$
Root an. cond. $5.52438$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s − 3-s − 4-s + 3.32i·5-s i·6-s i·8-s + 9-s − 3.32·10-s − 0.398i·11-s + 12-s + (−3.32 + 1.39i)13-s − 3.32i·15-s + 16-s − 2.39·17-s + i·18-s + 7.04i·19-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.577·3-s − 0.5·4-s + 1.48i·5-s − 0.408i·6-s − 0.353i·8-s + 0.333·9-s − 1.05·10-s − 0.120i·11-s + 0.288·12-s + (−0.921 + 0.387i)13-s − 0.858i·15-s + 0.250·16-s − 0.581·17-s + 0.235i·18-s + 1.61i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3822 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.387 + 0.921i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3822 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.387 + 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3822\)    =    \(2 \cdot 3 \cdot 7^{2} \cdot 13\)
Sign: $0.387 + 0.921i$
Analytic conductor: \(30.5188\)
Root analytic conductor: \(5.52438\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3822} (883, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3822,\ (\ :1/2),\ 0.387 + 0.921i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1618844278\)
\(L(\frac12)\) \(\approx\) \(0.1618844278\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 + T \)
7 \( 1 \)
13 \( 1 + (3.32 - 1.39i)T \)
good5 \( 1 - 3.32iT - 5T^{2} \)
11 \( 1 + 0.398iT - 11T^{2} \)
17 \( 1 + 2.39T + 17T^{2} \)
19 \( 1 - 7.04iT - 19T^{2} \)
23 \( 1 + 0.676T + 23T^{2} \)
29 \( 1 - 4.11T + 29T^{2} \)
31 \( 1 + 2.64iT - 31T^{2} \)
37 \( 1 + 1.32iT - 37T^{2} \)
41 \( 1 + 0.646iT - 41T^{2} \)
43 \( 1 + 8.89T + 43T^{2} \)
47 \( 1 - 1.20iT - 47T^{2} \)
53 \( 1 + 9.44T + 53T^{2} \)
59 \( 1 - 4.64iT - 59T^{2} \)
61 \( 1 + 2.11T + 61T^{2} \)
67 \( 1 - 8.49iT - 67T^{2} \)
71 \( 1 + 11.4iT - 71T^{2} \)
73 \( 1 + 5.60iT - 73T^{2} \)
79 \( 1 - 4.79T + 79T^{2} \)
83 \( 1 - 9.44iT - 83T^{2} \)
89 \( 1 + 9.44iT - 89T^{2} \)
97 \( 1 + 2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.087027516539329781398520492203, −8.012388871998751400408700903194, −7.53285739466591262128728828521, −6.68305974301093102655219659979, −6.37682866924324116964643893186, −5.57766963906422587211961790759, −4.66011312692943668328688600483, −3.82121580016717315797552542784, −2.89765341169371013131703556653, −1.80039207785902550726345941873, 0.06027307661935353412901108695, 0.958374883123755334598654783219, 2.02257842126672150961273454223, 3.06645459041822135974328876064, 4.30810462239104586934626041806, 4.93100100631546539395595214837, 5.15372099228138256343241594866, 6.34538900819411581383986856372, 7.15875232841033681669292555823, 8.155668053616188584923420991835

Graph of the $Z$-function along the critical line