Properties

Label 4-3800e2-1.1-c0e2-0-3
Degree $4$
Conductor $14440000$
Sign $1$
Analytic cond. $3.59651$
Root an. cond. $1.37711$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 9-s + 16-s + 2·19-s − 2·29-s − 36-s + 49-s − 2·59-s − 64-s − 2·76-s − 2·109-s + 2·116-s + 2·121-s + 127-s + 131-s + 137-s + 139-s + 144-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s + 2·171-s + 173-s + 179-s + ⋯
L(s)  = 1  − 4-s + 9-s + 16-s + 2·19-s − 2·29-s − 36-s + 49-s − 2·59-s − 64-s − 2·76-s − 2·109-s + 2·116-s + 2·121-s + 127-s + 131-s + 137-s + 139-s + 144-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s + 2·171-s + 173-s + 179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14440000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14440000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(14440000\)    =    \(2^{6} \cdot 5^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(3.59651\)
Root analytic conductor: \(1.37711\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 14440000,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.196912916\)
\(L(\frac12)\) \(\approx\) \(1.196912916\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
5 \( 1 \)
19$C_1$ \( ( 1 - T )^{2} \)
good3$C_2^2$ \( 1 - T^{2} + T^{4} \)
7$C_2^2$ \( 1 - T^{2} + T^{4} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
13$C_2^2$ \( 1 - T^{2} + T^{4} \)
17$C_2^2$ \( 1 - T^{2} + T^{4} \)
23$C_2^2$ \( 1 - T^{2} + T^{4} \)
29$C_2$ \( ( 1 + T + T^{2} )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_2$ \( ( 1 + T^{2} )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_2$ \( ( 1 + T^{2} )^{2} \)
47$C_2$ \( ( 1 + T^{2} )^{2} \)
53$C_2^2$ \( 1 - T^{2} + T^{4} \)
59$C_2$ \( ( 1 + T + T^{2} )^{2} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
67$C_2^2$ \( 1 - T^{2} + T^{4} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_2^2$ \( 1 - T^{2} + T^{4} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_2$ \( ( 1 + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.979156002578638622016660934646, −8.539400458459226246713354083138, −8.062701672845131715446036238713, −7.65045826460458957704852268444, −7.50949738233287366161816190885, −7.16898432497399265152039396491, −6.77686020155119560370831250674, −6.11287410826067766002001180262, −5.87099393414101980963581132704, −5.32327541962982309488265821620, −5.22767463709298347933392244255, −4.69789260332584874012026368050, −4.20713022791218069208995118319, −3.98425745809863797388524273556, −3.43733093714784673823352089163, −3.15283535359670198147987758211, −2.56186136651496180776803030509, −1.69543703243622900568843123875, −1.46654260983831209793963632514, −0.68383982668508738324042273792, 0.68383982668508738324042273792, 1.46654260983831209793963632514, 1.69543703243622900568843123875, 2.56186136651496180776803030509, 3.15283535359670198147987758211, 3.43733093714784673823352089163, 3.98425745809863797388524273556, 4.20713022791218069208995118319, 4.69789260332584874012026368050, 5.22767463709298347933392244255, 5.32327541962982309488265821620, 5.87099393414101980963581132704, 6.11287410826067766002001180262, 6.77686020155119560370831250674, 7.16898432497399265152039396491, 7.50949738233287366161816190885, 7.65045826460458957704852268444, 8.062701672845131715446036238713, 8.539400458459226246713354083138, 8.979156002578638622016660934646

Graph of the $Z$-function along the critical line