Properties

Label 8-380e4-1.1-c2e4-0-1
Degree $8$
Conductor $20851360000$
Sign $1$
Analytic cond. $11494.0$
Root an. cond. $3.21780$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·5-s − 36·9-s + 6·11-s − 76·19-s + 25·25-s − 324·45-s + 73·49-s + 54·55-s + 206·61-s + 810·81-s − 684·95-s − 216·99-s + 408·101-s + 251·121-s − 54·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 676·169-s + 2.73e3·171-s + 173-s + ⋯
L(s)  = 1  + 9/5·5-s − 4·9-s + 6/11·11-s − 4·19-s + 25-s − 7.19·45-s + 1.48·49-s + 0.981·55-s + 3.37·61-s + 10·81-s − 7.19·95-s − 2.18·99-s + 4.03·101-s + 2.07·121-s − 0.431·125-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s − 4·169-s + 16·171-s + 0.00578·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{4} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{4} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 5^{4} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(11494.0\)
Root analytic conductor: \(3.21780\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 5^{4} \cdot 19^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.873678481\)
\(L(\frac12)\) \(\approx\) \(1.873678481\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2^2$ \( 1 - 9 T + 56 T^{2} - 9 p^{2} T^{3} + p^{4} T^{4} \)
19$C_1$ \( ( 1 + p T )^{4} \)
good3$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
7$C_2^2$$\times$$C_2^2$ \( ( 1 - 5 T - 24 T^{2} - 5 p^{2} T^{3} + p^{4} T^{4} )( 1 + 5 T - 24 T^{2} + 5 p^{2} T^{3} + p^{4} T^{4} ) \)
11$C_2^2$ \( ( 1 - 3 T - 112 T^{2} - 3 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
13$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
17$C_2^2$$\times$$C_2^2$ \( ( 1 - 15 T - 64 T^{2} - 15 p^{2} T^{3} + p^{4} T^{4} )( 1 + 15 T - 64 T^{2} + 15 p^{2} T^{3} + p^{4} T^{4} ) \)
23$C_2$ \( ( 1 - 30 T + p^{2} T^{2} )^{2}( 1 + 30 T + p^{2} T^{2} )^{2} \)
29$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
31$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
37$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
41$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
43$C_2^2$$\times$$C_2^2$ \( ( 1 - 85 T + 5376 T^{2} - 85 p^{2} T^{3} + p^{4} T^{4} )( 1 + 85 T + 5376 T^{2} + 85 p^{2} T^{3} + p^{4} T^{4} ) \)
47$C_2^2$$\times$$C_2^2$ \( ( 1 - 75 T + 3416 T^{2} - 75 p^{2} T^{3} + p^{4} T^{4} )( 1 + 75 T + 3416 T^{2} + 75 p^{2} T^{3} + p^{4} T^{4} ) \)
53$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
59$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
61$C_2^2$ \( ( 1 - 103 T + 6888 T^{2} - 103 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
67$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
71$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
73$C_2^2$$\times$$C_2^2$ \( ( 1 - 25 T - 4704 T^{2} - 25 p^{2} T^{3} + p^{4} T^{4} )( 1 + 25 T - 4704 T^{2} + 25 p^{2} T^{3} + p^{4} T^{4} ) \)
79$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
83$C_2$ \( ( 1 - 90 T + p^{2} T^{2} )^{2}( 1 + 90 T + p^{2} T^{2} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
97$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.030056034697041029272178998588, −8.012102840132713892493159068454, −7.59328391228926338863015565025, −7.03417414972920917516311102155, −6.99912113461432831028506833672, −6.45097818617978536355178950109, −6.41169093787028445038474743640, −6.04440355574004602385604384382, −5.98869635432408076563673816301, −5.78876797994101388213218384341, −5.75663178723311824835501360869, −4.98842543503486023617978898820, −4.98019738760713183467793230690, −4.94724755994227988532532015744, −4.14458021363873305072041519107, −3.93284131387965105148104834508, −3.62791571220685113820423010922, −3.30417424409565413749275365599, −2.74443997547090919224772920435, −2.43818391686994095334391148065, −2.33284381781232185483145750099, −2.12907155089320428550870309967, −1.70731235583498825174625782280, −0.64418033744644635485087214622, −0.38703907274683668452437268089, 0.38703907274683668452437268089, 0.64418033744644635485087214622, 1.70731235583498825174625782280, 2.12907155089320428550870309967, 2.33284381781232185483145750099, 2.43818391686994095334391148065, 2.74443997547090919224772920435, 3.30417424409565413749275365599, 3.62791571220685113820423010922, 3.93284131387965105148104834508, 4.14458021363873305072041519107, 4.94724755994227988532532015744, 4.98019738760713183467793230690, 4.98842543503486023617978898820, 5.75663178723311824835501360869, 5.78876797994101388213218384341, 5.98869635432408076563673816301, 6.04440355574004602385604384382, 6.41169093787028445038474743640, 6.45097818617978536355178950109, 6.99912113461432831028506833672, 7.03417414972920917516311102155, 7.59328391228926338863015565025, 8.012102840132713892493159068454, 8.030056034697041029272178998588

Graph of the $Z$-function along the critical line