Properties

Label 2-38-19.3-c2-0-3
Degree $2$
Conductor $38$
Sign $0.408 + 0.912i$
Analytic cond. $1.03542$
Root an. cond. $1.01755$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.909 − 1.08i)2-s + (−0.830 − 2.28i)3-s + (−0.347 − 1.96i)4-s + (0.0233 − 0.132i)5-s + (−3.22 − 1.17i)6-s + (4.79 + 8.30i)7-s + (−2.44 − 1.41i)8-s + (2.37 − 1.99i)9-s + (−0.122 − 0.145i)10-s + (−7.19 + 12.4i)11-s + (−4.20 + 2.42i)12-s + (1.30 − 3.57i)13-s + (13.3 + 2.35i)14-s + (−0.321 + 0.0567i)15-s + (−3.75 + 1.36i)16-s + (−3.78 − 3.17i)17-s + ⋯
L(s)  = 1  + (0.454 − 0.541i)2-s + (−0.276 − 0.760i)3-s + (−0.0868 − 0.492i)4-s + (0.00467 − 0.0264i)5-s + (−0.538 − 0.195i)6-s + (0.684 + 1.18i)7-s + (−0.306 − 0.176i)8-s + (0.263 − 0.221i)9-s + (−0.0122 − 0.0145i)10-s + (−0.653 + 1.13i)11-s + (−0.350 + 0.202i)12-s + (0.100 − 0.274i)13-s + (0.953 + 0.168i)14-s + (−0.0214 + 0.00378i)15-s + (−0.234 + 0.0855i)16-s + (−0.222 − 0.186i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.408 + 0.912i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.408 + 0.912i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38\)    =    \(2 \cdot 19\)
Sign: $0.408 + 0.912i$
Analytic conductor: \(1.03542\)
Root analytic conductor: \(1.01755\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{38} (3, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 38,\ (\ :1),\ 0.408 + 0.912i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.02245 - 0.662483i\)
\(L(\frac12)\) \(\approx\) \(1.02245 - 0.662483i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.909 + 1.08i)T \)
19 \( 1 + (17.3 - 7.75i)T \)
good3 \( 1 + (0.830 + 2.28i)T + (-6.89 + 5.78i)T^{2} \)
5 \( 1 + (-0.0233 + 0.132i)T + (-23.4 - 8.55i)T^{2} \)
7 \( 1 + (-4.79 - 8.30i)T + (-24.5 + 42.4i)T^{2} \)
11 \( 1 + (7.19 - 12.4i)T + (-60.5 - 104. i)T^{2} \)
13 \( 1 + (-1.30 + 3.57i)T + (-129. - 108. i)T^{2} \)
17 \( 1 + (3.78 + 3.17i)T + (50.1 + 284. i)T^{2} \)
23 \( 1 + (3.30 + 18.7i)T + (-497. + 180. i)T^{2} \)
29 \( 1 + (23.8 + 28.3i)T + (-146. + 828. i)T^{2} \)
31 \( 1 + (-26.2 + 15.1i)T + (480.5 - 832. i)T^{2} \)
37 \( 1 - 48.8iT - 1.36e3T^{2} \)
41 \( 1 + (9.73 + 26.7i)T + (-1.28e3 + 1.08e3i)T^{2} \)
43 \( 1 + (10.5 - 59.8i)T + (-1.73e3 - 632. i)T^{2} \)
47 \( 1 + (48.6 - 40.8i)T + (383. - 2.17e3i)T^{2} \)
53 \( 1 + (-31.2 + 5.51i)T + (2.63e3 - 960. i)T^{2} \)
59 \( 1 + (-54.6 + 65.1i)T + (-604. - 3.42e3i)T^{2} \)
61 \( 1 + (20.0 + 113. i)T + (-3.49e3 + 1.27e3i)T^{2} \)
67 \( 1 + (-42.6 - 50.8i)T + (-779. + 4.42e3i)T^{2} \)
71 \( 1 + (-56.2 - 9.91i)T + (4.73e3 + 1.72e3i)T^{2} \)
73 \( 1 + (-75.4 + 27.4i)T + (4.08e3 - 3.42e3i)T^{2} \)
79 \( 1 + (35.2 + 96.9i)T + (-4.78e3 + 4.01e3i)T^{2} \)
83 \( 1 + (40.5 + 70.2i)T + (-3.44e3 + 5.96e3i)T^{2} \)
89 \( 1 + (42.3 - 116. i)T + (-6.06e3 - 5.09e3i)T^{2} \)
97 \( 1 + (-6.38 + 7.61i)T + (-1.63e3 - 9.26e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.45679508636638482566236660744, −14.76004258167089230334739826349, −13.04146857415836855671917837326, −12.42328916114169550908561254484, −11.37743424123981741539925631352, −9.826517233700153172143516542982, −8.133477904362590360961291745885, −6.39447917743742527164111074914, −4.82817256802283830953721226733, −2.14055643804036482267076325834, 3.97988591769579696185072244645, 5.25619649192932036697397235611, 7.10972697398981605946671533082, 8.529979915039901214481483935908, 10.44328603920539560446949397105, 11.18547671794325085087985589465, 13.11097587621821804385778129494, 14.00484243899087212157173783178, 15.22975553032035584302489656738, 16.35129748107499046114788576866

Graph of the $Z$-function along the critical line