L(s) = 1 | + 1.41i·2-s − 2.00·4-s + (−1.22 − 0.707i)5-s + (3.10 − 6.27i)7-s − 2.82i·8-s + (1.00 − 1.73i)10-s + (−15.1 + 8.72i)11-s + (8.59 + 14.8i)13-s + (8.87 + 4.38i)14-s + 4.00·16-s + (20.8 + 12.0i)17-s + (11.7 + 20.4i)19-s + (2.44 + 1.41i)20-s + (−12.3 − 21.3i)22-s + (27.1 + 15.6i)23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.500·4-s + (−0.244 − 0.141i)5-s + (0.443 − 0.896i)7-s − 0.353i·8-s + (0.100 − 0.173i)10-s + (−1.37 + 0.793i)11-s + (0.660 + 1.14i)13-s + (0.633 + 0.313i)14-s + 0.250·16-s + (1.22 + 0.708i)17-s + (0.620 + 1.07i)19-s + (0.122 + 0.0707i)20-s + (−0.561 − 0.971i)22-s + (1.17 + 0.680i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.209 - 0.977i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.209 - 0.977i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.874936 + 1.08170i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.874936 + 1.08170i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 1.41iT \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-3.10 + 6.27i)T \) |
good | 5 | \( 1 + (1.22 + 0.707i)T + (12.5 + 21.6i)T^{2} \) |
| 11 | \( 1 + (15.1 - 8.72i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (-8.59 - 14.8i)T + (-84.5 + 146. i)T^{2} \) |
| 17 | \( 1 + (-20.8 - 12.0i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-11.7 - 20.4i)T + (-180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (-27.1 - 15.6i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (-13.7 - 7.94i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + 32.1T + 961T^{2} \) |
| 37 | \( 1 + (-15.7 - 27.1i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 + (8.67 - 5.00i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (31.6 - 54.8i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + 4.27iT - 2.20e3T^{2} \) |
| 53 | \( 1 + (-45.3 - 26.1i)T + (1.40e3 + 2.43e3i)T^{2} \) |
| 59 | \( 1 + 42.1iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 12.4T + 3.72e3T^{2} \) |
| 67 | \( 1 - 96.1T + 4.48e3T^{2} \) |
| 71 | \( 1 - 20.8iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (-41.6 + 72.1i)T + (-2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + 45.1T + 6.24e3T^{2} \) |
| 83 | \( 1 + (3.73 + 2.15i)T + (3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + (123. - 71.4i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + (17.5 - 30.3i)T + (-4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.35480055299119204738809685497, −10.33382455502655489071526735220, −9.637135384670201517772231615300, −8.240466045322635164394796125432, −7.74003257049160631153134238168, −6.83335222141154231341932944192, −5.55771735973020408070009711197, −4.60876490535097854513184962473, −3.53823127781911894167682186389, −1.42165843786187790330222829716,
0.69223716979086741616367789181, 2.62588978965216752648830357522, 3.35258494055229096734703245938, 5.23647938876536856424599209641, 5.51150170118763802468012199548, 7.37494007942439185333621207214, 8.256266663238584369292857183627, 9.027092881548092537443169626486, 10.18460460948132166334023647465, 11.02955703331242138086345225115