L(s) = 1 | + (1.22 + 0.707i)2-s + (0.999 + 1.73i)4-s + (−2.76 + 1.59i)5-s + (−1.32 + 2.29i)7-s + 2.82i·8-s − 4.52·10-s + (16.3 + 9.42i)11-s + (−5.18 − 8.98i)13-s + (−3.24 + 1.87i)14-s + (−2.00 + 3.46i)16-s + 24.4i·17-s − 26.5·19-s + (−5.53 − 3.19i)20-s + (13.3 + 23.0i)22-s + (−35.3 + 20.4i)23-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.249 + 0.433i)4-s + (−0.553 + 0.319i)5-s + (−0.188 + 0.327i)7-s + 0.353i·8-s − 0.452·10-s + (1.48 + 0.857i)11-s + (−0.398 − 0.690i)13-s + (−0.231 + 0.133i)14-s + (−0.125 + 0.216i)16-s + 1.43i·17-s − 1.39·19-s + (−0.276 − 0.159i)20-s + (0.606 + 1.04i)22-s + (−1.53 + 0.888i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.546 - 0.837i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.546 - 0.837i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.859910 + 1.58848i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.859910 + 1.58848i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.22 - 0.707i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1.32 - 2.29i)T \) |
good | 5 | \( 1 + (2.76 - 1.59i)T + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (-16.3 - 9.42i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (5.18 + 8.98i)T + (-84.5 + 146. i)T^{2} \) |
| 17 | \( 1 - 24.4iT - 289T^{2} \) |
| 19 | \( 1 + 26.5T + 361T^{2} \) |
| 23 | \( 1 + (35.3 - 20.4i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-18.8 - 10.8i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-1.37 - 2.38i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 - 45.6T + 1.36e3T^{2} \) |
| 41 | \( 1 + (-12.8 + 7.41i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-14.4 + 25.0i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-25.7 - 14.8i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + 18.1iT - 2.80e3T^{2} \) |
| 59 | \( 1 + (-46.4 + 26.7i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-13.9 + 24.1i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-46.2 - 80.1i)T + (-2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 + 81.9iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 81.2T + 5.32e3T^{2} \) |
| 79 | \( 1 + (-42.3 + 73.2i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-99.9 - 57.6i)T + (3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + 13.7iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-55.7 + 96.6i)T + (-4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.73181380762234285971752951156, −10.65436713821963614341371386539, −9.644240513248039281949470446225, −8.488679736738365225259706610669, −7.60993602364513569991661365111, −6.57832034980445841745324668706, −5.82977346687116212704800361538, −4.31303294682314144760989925792, −3.66378221783401273700937270921, −2.01557069065687750494162425522,
0.65541276554297921822338088408, 2.45191645351587662093823153297, 4.02218389379000074961400630471, 4.43137248644363140464020484142, 6.08561568614483987834769648176, 6.75921944057073285962841907237, 8.078853421685210390584783316183, 9.081695401103944056057155919020, 9.983238017693224712275664705607, 11.14091347616742730448873671030