L(s) = 1 | + (−1.22 + 0.707i)2-s + (0.999 − 1.73i)4-s + 9.69i·5-s + (6.99 + 0.244i)7-s + 2.82i·8-s + (−6.85 − 11.8i)10-s + 0.747i·11-s + (8.35 + 14.4i)13-s + (−8.74 + 4.64i)14-s + (−2.00 − 3.46i)16-s + (5.71 − 3.30i)17-s + (−0.429 + 0.744i)19-s + (16.7 + 9.69i)20-s + (−0.528 − 0.915i)22-s − 19.1i·23-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + 1.93i·5-s + (0.999 + 0.0349i)7-s + 0.353i·8-s + (−0.685 − 1.18i)10-s + 0.0679i·11-s + (0.642 + 1.11i)13-s + (−0.624 + 0.331i)14-s + (−0.125 − 0.216i)16-s + (0.336 − 0.194i)17-s + (−0.0226 + 0.0391i)19-s + (0.839 + 0.484i)20-s + (−0.0240 − 0.0416i)22-s − 0.830i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.645 - 0.764i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.645 - 0.764i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.547259 + 1.17809i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.547259 + 1.17809i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.22 - 0.707i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-6.99 - 0.244i)T \) |
good | 5 | \( 1 - 9.69iT - 25T^{2} \) |
| 11 | \( 1 - 0.747iT - 121T^{2} \) |
| 13 | \( 1 + (-8.35 - 14.4i)T + (-84.5 + 146. i)T^{2} \) |
| 17 | \( 1 + (-5.71 + 3.30i)T + (144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (0.429 - 0.744i)T + (-180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + 19.1iT - 529T^{2} \) |
| 29 | \( 1 + (-19.2 - 11.1i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-19.6 + 34.0i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (34.2 - 59.2i)T + (-684.5 - 1.18e3i)T^{2} \) |
| 41 | \( 1 + (27.4 - 15.8i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (30.3 - 52.6i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (1.03 - 0.597i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (20.6 - 11.9i)T + (1.40e3 - 2.43e3i)T^{2} \) |
| 59 | \( 1 + (19.6 + 11.3i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-4.17 - 7.22i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-8.09 + 14.0i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + 36.6iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (-1.75 - 3.03i)T + (-2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + (50.1 + 86.9i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (21.5 + 12.4i)T + (3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + (-53.5 - 30.9i)T + (3.96e3 + 6.85e3i)T^{2} \) |
| 97 | \( 1 + (-22.1 + 38.4i)T + (-4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.35669789169376345486565208846, −10.52031820787044775057533578863, −9.833884366229871040665789044487, −8.537378408152083586486743732940, −7.70573488553566317568309388915, −6.74496952811999650354315568604, −6.18906444187143765896560660311, −4.58931812752820623596048324418, −3.08425682020928155878919466074, −1.80330901826338566375534622698,
0.75358600132657902177672540117, 1.72744450505946049350848301526, 3.71403638428132783298083819888, 4.94816718623076760188041442422, 5.67271188236253615302484913992, 7.48567442581773700637499839559, 8.494711620416904890563155963233, 8.606780849824742211643046303169, 9.847561622886132405966783557590, 10.76262571971265529133401186982