L(s) = 1 | + (1.22 + 0.707i)2-s + (0.999 + 1.73i)4-s − 2.72i·5-s + (−4.37 − 5.46i)7-s + 2.82i·8-s + (1.92 − 3.34i)10-s − 2.91i·11-s + (10.4 − 18.1i)13-s + (−1.49 − 9.78i)14-s + (−2.00 + 3.46i)16-s + (24.7 + 14.2i)17-s + (−17.7 − 30.7i)19-s + (4.72 − 2.72i)20-s + (2.05 − 3.56i)22-s − 15.7i·23-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.249 + 0.433i)4-s − 0.545i·5-s + (−0.625 − 0.780i)7-s + 0.353i·8-s + (0.192 − 0.334i)10-s − 0.264i·11-s + (0.805 − 1.39i)13-s + (−0.106 − 0.698i)14-s + (−0.125 + 0.216i)16-s + (1.45 + 0.841i)17-s + (−0.933 − 1.61i)19-s + (0.236 − 0.136i)20-s + (0.0935 − 0.162i)22-s − 0.683i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.672 + 0.740i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.672 + 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.96352 - 0.868848i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.96352 - 0.868848i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.22 - 0.707i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (4.37 + 5.46i)T \) |
good | 5 | \( 1 + 2.72iT - 25T^{2} \) |
| 11 | \( 1 + 2.91iT - 121T^{2} \) |
| 13 | \( 1 + (-10.4 + 18.1i)T + (-84.5 - 146. i)T^{2} \) |
| 17 | \( 1 + (-24.7 - 14.2i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (17.7 + 30.7i)T + (-180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + 15.7iT - 529T^{2} \) |
| 29 | \( 1 + (18.1 - 10.4i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (-6.23 - 10.7i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (5.80 + 10.0i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 + (26.4 + 15.2i)T + (840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (12.6 + 21.9i)T + (-924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-73.2 - 42.3i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + (-15.1 - 8.77i)T + (1.40e3 + 2.43e3i)T^{2} \) |
| 59 | \( 1 + (-37.3 + 21.5i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (15.1 - 26.2i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (43.2 + 74.8i)T + (-2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 - 1.24iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (6.48 - 11.2i)T + (-2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + (51.7 - 89.6i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (35.2 - 20.3i)T + (3.44e3 - 5.96e3i)T^{2} \) |
| 89 | \( 1 + (-15.5 + 8.95i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + (2.62 + 4.54i)T + (-4.70e3 + 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.83574313222105950391957466359, −10.41979145725124369497966096191, −8.973911960298864095034293148601, −8.179593533011377887358159090620, −7.13487315580375178950275202150, −6.12746803929743389486234364778, −5.19925298575087546459693774644, −3.98027368228849992650288501474, −3.01485620298218246715461451535, −0.821884066170982508169982944307,
1.77483974558101890276843809938, 3.10771155281932884642197636138, 4.06470756908997421353277237157, 5.54253139498269630207432115541, 6.29351699021898562889059767757, 7.27712766525416826939744376354, 8.631484907163367830395115248892, 9.662568395369932964425290249489, 10.35174624658183730895896386613, 11.58237952603574149197288630332