L(s) = 1 | + (0.413 − 0.459i)3-s + (0.309 + 0.951i)4-s + (1.22 + 1.35i)5-s + (0.0646 + 0.614i)9-s + (0.564 + 0.251i)12-s + 1.12·15-s + (−0.809 + 0.587i)16-s + (−0.913 + 1.58i)20-s + (−0.604 − 1.86i)23-s + (−0.244 + 2.32i)25-s + (0.809 + 0.587i)27-s + (0.669 − 0.743i)31-s + (−0.564 + 0.251i)36-s + (−0.913 − 0.406i)37-s + (−0.755 + 0.839i)45-s + ⋯ |
L(s) = 1 | + (0.413 − 0.459i)3-s + (0.309 + 0.951i)4-s + (1.22 + 1.35i)5-s + (0.0646 + 0.614i)9-s + (0.564 + 0.251i)12-s + 1.12·15-s + (−0.809 + 0.587i)16-s + (−0.913 + 1.58i)20-s + (−0.604 − 1.86i)23-s + (−0.244 + 2.32i)25-s + (0.809 + 0.587i)27-s + (0.669 − 0.743i)31-s + (−0.564 + 0.251i)36-s + (−0.913 − 0.406i)37-s + (−0.755 + 0.839i)45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.251 - 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.251 - 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.971762574\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.971762574\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 31 | \( 1 + (-0.669 + 0.743i)T \) |
good | 2 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 3 | \( 1 + (-0.413 + 0.459i)T + (-0.104 - 0.994i)T^{2} \) |
| 5 | \( 1 + (-1.22 - 1.35i)T + (-0.104 + 0.994i)T^{2} \) |
| 7 | \( 1 + (0.104 + 0.994i)T^{2} \) |
| 13 | \( 1 + (0.104 - 0.994i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.604 + 1.86i)T + (-0.809 + 0.587i)T^{2} \) |
| 29 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 + (0.913 + 0.406i)T + (0.669 + 0.743i)T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.669 - 0.743i)T^{2} \) |
| 47 | \( 1 + (0.0646 + 0.198i)T + (-0.809 + 0.587i)T^{2} \) |
| 53 | \( 1 + (0.190 + 1.81i)T + (-0.978 + 0.207i)T^{2} \) |
| 59 | \( 1 + (-0.978 - 1.69i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + (-0.104 + 0.181i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (-0.913 - 0.406i)T^{2} \) |
| 79 | \( 1 + (-0.669 - 0.743i)T^{2} \) |
| 83 | \( 1 + (-0.913 - 0.406i)T^{2} \) |
| 89 | \( 1 + (0.309 - 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
| 97 | \( 1 + 1.95T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.573324697299657587151987078437, −8.134661474665390528593939036970, −7.19976956919875839254788592418, −6.79130036606368650649797551454, −6.18075177841986143475855528839, −5.18604520664589927862488191502, −4.03693083614270919044975188364, −3.06309658163754184813073876276, −2.37894099430592861079174342301, −1.97213290299597616992796405645,
1.12422694527807763798033292267, 1.76063383302263814277531764516, 2.88939254680745329382730644519, 4.07615510421349859112104190066, 4.91599561715441054851276421255, 5.51440886307189796147504497555, 6.11134847547232520386619280502, 6.85353617185717670626558258017, 8.014181344734240628332128017951, 8.872086624136227861683378001056