Properties

Label 8-3751e4-1.1-c0e4-0-4
Degree $8$
Conductor $1.980\times 10^{14}$
Sign $1$
Analytic cond. $12.2805$
Root an. cond. $1.36820$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s + 3·5-s − 9-s + 10·16-s − 12·20-s + 5·23-s + 6·25-s + 31-s + 4·36-s − 3·45-s − 3·47-s − 4·49-s + 3·59-s − 20·64-s − 2·67-s + 2·71-s + 30·80-s − 20·92-s + 2·97-s − 24·100-s + 2·103-s − 2·113-s + 15·115-s − 4·124-s + 10·125-s + 127-s + 131-s + ⋯
L(s)  = 1  − 4·4-s + 3·5-s − 9-s + 10·16-s − 12·20-s + 5·23-s + 6·25-s + 31-s + 4·36-s − 3·45-s − 3·47-s − 4·49-s + 3·59-s − 20·64-s − 2·67-s + 2·71-s + 30·80-s − 20·92-s + 2·97-s − 24·100-s + 2·103-s − 2·113-s + 15·115-s − 4·124-s + 10·125-s + 127-s + 131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(11^{8} \cdot 31^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(11^{8} \cdot 31^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(11^{8} \cdot 31^{4}\)
Sign: $1$
Analytic conductor: \(12.2805\)
Root analytic conductor: \(1.36820\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 11^{8} \cdot 31^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.341831786\)
\(L(\frac12)\) \(\approx\) \(1.341831786\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad11 \( 1 \)
31$C_4$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
good2$C_2$ \( ( 1 + T^{2} )^{4} \)
3$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
5$C_1$$\times$$C_4$ \( ( 1 - T )^{4}( 1 + T + T^{2} + T^{3} + T^{4} ) \)
7$C_2$ \( ( 1 + T^{2} )^{4} \)
13$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
17$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
19$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
23$C_1$$\times$$C_4$ \( ( 1 - T )^{4}( 1 - T + T^{2} - T^{3} + T^{4} ) \)
29$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
37$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
41$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
43$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
47$C_1$$\times$$C_4$ \( ( 1 + T )^{4}( 1 - T + T^{2} - T^{3} + T^{4} ) \)
53$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
59$C_1$$\times$$C_4$ \( ( 1 - T )^{4}( 1 + T + T^{2} + T^{3} + T^{4} ) \)
61$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
67$C_4$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
71$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
79$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
83$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
89$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
97$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.13063247515123574298012772331, −5.84257416073717315958684290220, −5.73395049661434522570367837059, −5.37581908436124495815416880089, −5.34242272826820922879674468034, −5.06161136115338882233992946851, −5.06019988255498499975118980542, −4.88516118979685727675920366789, −4.85872805893364017976750491253, −4.50968662827010846171187490578, −4.50525607172938350622754800900, −4.12755638025907934968836263638, −3.56042116071381039590998719517, −3.41308810787272541818645657369, −3.41030114179003885484446295539, −3.16932801058873083676924285993, −2.97333894924370551672699495606, −2.69778475351704603663550900617, −2.54507860571260005338407315781, −2.01779512216252698686975304614, −1.58409939556362656583633102958, −1.44185526976509011453019277978, −1.16102536783901361078357512959, −0.904218784242329787342517096829, −0.59611671820850027271645145416, 0.59611671820850027271645145416, 0.904218784242329787342517096829, 1.16102536783901361078357512959, 1.44185526976509011453019277978, 1.58409939556362656583633102958, 2.01779512216252698686975304614, 2.54507860571260005338407315781, 2.69778475351704603663550900617, 2.97333894924370551672699495606, 3.16932801058873083676924285993, 3.41030114179003885484446295539, 3.41308810787272541818645657369, 3.56042116071381039590998719517, 4.12755638025907934968836263638, 4.50525607172938350622754800900, 4.50968662827010846171187490578, 4.85872805893364017976750491253, 4.88516118979685727675920366789, 5.06019988255498499975118980542, 5.06161136115338882233992946851, 5.34242272826820922879674468034, 5.37581908436124495815416880089, 5.73395049661434522570367837059, 5.84257416073717315958684290220, 6.13063247515123574298012772331

Graph of the $Z$-function along the critical line