Properties

Label 2-3750-5.4-c1-0-24
Degree $2$
Conductor $3750$
Sign $-1$
Analytic cond. $29.9439$
Root an. cond. $5.47210$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s + i·3-s − 4-s − 6-s + 2.07i·7-s i·8-s − 9-s + 0.520·11-s i·12-s + 2.18i·13-s − 2.07·14-s + 16-s − 2.69i·17-s i·18-s + 6.87·19-s + ⋯
L(s)  = 1  + 0.707i·2-s + 0.577i·3-s − 0.5·4-s − 0.408·6-s + 0.785i·7-s − 0.353i·8-s − 0.333·9-s + 0.156·11-s − 0.288i·12-s + 0.606i·13-s − 0.555·14-s + 0.250·16-s − 0.653i·17-s − 0.235i·18-s + 1.57·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3750 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3750 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3750\)    =    \(2 \cdot 3 \cdot 5^{4}\)
Sign: $-1$
Analytic conductor: \(29.9439\)
Root analytic conductor: \(5.47210\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3750} (1249, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3750,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.499354156\)
\(L(\frac12)\) \(\approx\) \(1.499354156\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 - iT \)
5 \( 1 \)
good7 \( 1 - 2.07iT - 7T^{2} \)
11 \( 1 - 0.520T + 11T^{2} \)
13 \( 1 - 2.18iT - 13T^{2} \)
17 \( 1 + 2.69iT - 17T^{2} \)
19 \( 1 - 6.87T + 19T^{2} \)
23 \( 1 - 3.86iT - 23T^{2} \)
29 \( 1 - 9.03T + 29T^{2} \)
31 \( 1 + 7.40T + 31T^{2} \)
37 \( 1 - 5.30iT - 37T^{2} \)
41 \( 1 + 3.22T + 41T^{2} \)
43 \( 1 - 9.53iT - 43T^{2} \)
47 \( 1 - 9.26iT - 47T^{2} \)
53 \( 1 + 2.43iT - 53T^{2} \)
59 \( 1 + 8.64T + 59T^{2} \)
61 \( 1 - 12.5T + 61T^{2} \)
67 \( 1 + 6.69iT - 67T^{2} \)
71 \( 1 + 8.16T + 71T^{2} \)
73 \( 1 - 3.84iT - 73T^{2} \)
79 \( 1 + 3.51T + 79T^{2} \)
83 \( 1 + 13.1iT - 83T^{2} \)
89 \( 1 - 9.85T + 89T^{2} \)
97 \( 1 - 10.7iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.981223444256516473384543035679, −8.126936117890737270329944175313, −7.43046171198453703888217918476, −6.61771320524048058039159158888, −5.85194148772894204673921867922, −5.13359465128454508352171205563, −4.58675415997587091749589496546, −3.48228565079871217018865642055, −2.75148201059821619079245746232, −1.29210582847615368107349745602, 0.49371452366259607041212217149, 1.36729290703454103898909745399, 2.45852484345724089569233403713, 3.39440369989828174264294752407, 4.06798787926231589648614091685, 5.14067040815722750027142394484, 5.77967409574152406502883147446, 6.87932842397763070792390285412, 7.35890181350354425454799578950, 8.240487888080244136205380360148

Graph of the $Z$-function along the critical line