L(s) = 1 | + 3.68·5-s − 5.03i·7-s − 3.64i·11-s − i·13-s − 5.67i·17-s + 1.84·19-s + 2.33·23-s + 8.55·25-s + 4.56·29-s + 10.2i·31-s − 18.5i·35-s + 1.61i·37-s + 11.3i·41-s + 1.54·43-s − 7.17·47-s + ⋯ |
L(s) = 1 | + 1.64·5-s − 1.90i·7-s − 1.09i·11-s − 0.277i·13-s − 1.37i·17-s + 0.422·19-s + 0.487·23-s + 1.71·25-s + 0.846·29-s + 1.83i·31-s − 3.13i·35-s + 0.265i·37-s + 1.76i·41-s + 0.235·43-s − 1.04·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.122 + 0.992i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.122 + 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.650264520\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.650264520\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + iT \) |
good | 5 | \( 1 - 3.68T + 5T^{2} \) |
| 7 | \( 1 + 5.03iT - 7T^{2} \) |
| 11 | \( 1 + 3.64iT - 11T^{2} \) |
| 17 | \( 1 + 5.67iT - 17T^{2} \) |
| 19 | \( 1 - 1.84T + 19T^{2} \) |
| 23 | \( 1 - 2.33T + 23T^{2} \) |
| 29 | \( 1 - 4.56T + 29T^{2} \) |
| 31 | \( 1 - 10.2iT - 31T^{2} \) |
| 37 | \( 1 - 1.61iT - 37T^{2} \) |
| 41 | \( 1 - 11.3iT - 41T^{2} \) |
| 43 | \( 1 - 1.54T + 43T^{2} \) |
| 47 | \( 1 + 7.17T + 47T^{2} \) |
| 53 | \( 1 + 2.41T + 53T^{2} \) |
| 59 | \( 1 + 7.69iT - 59T^{2} \) |
| 61 | \( 1 + 10.7iT - 61T^{2} \) |
| 67 | \( 1 + 1.62T + 67T^{2} \) |
| 71 | \( 1 + 6.50T + 71T^{2} \) |
| 73 | \( 1 - 7.47T + 73T^{2} \) |
| 79 | \( 1 + 5.87iT - 79T^{2} \) |
| 83 | \( 1 - 1.25iT - 83T^{2} \) |
| 89 | \( 1 - 1.11iT - 89T^{2} \) |
| 97 | \( 1 - 6.82T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.301385410272078346605064794122, −7.50515916749371792622151010663, −6.62150121392191831282590081499, −6.35510213240364314710027503769, −5.08258682320820602431913812631, −4.84460146930245506850993522113, −3.39585845800066520809966417804, −2.90410078511341018209994742508, −1.44474970626762148145870828473, −0.78059398758596737545152188957,
1.64522967688439301027456637940, 2.16748370368293125619679026203, 2.84202911447716918151480097278, 4.26466325443297270825350276006, 5.22874686627546661430123198284, 5.77774590960386503366871601812, 6.21942720197616959931099111927, 7.07814958365184895851436605822, 8.184440525614596845081121914259, 8.907017433223192809353024083971