Properties

Label 2-3744-24.11-c1-0-7
Degree $2$
Conductor $3744$
Sign $-0.832 - 0.554i$
Analytic cond. $29.8959$
Root an. cond. $5.46772$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.44·5-s + 2.55i·7-s + 5.76i·11-s i·13-s − 1.56i·17-s − 5.82·19-s − 2.69·23-s + 0.978·25-s − 6.76·29-s + 5.29i·31-s + 6.24i·35-s + 1.74i·37-s + 7.99i·41-s − 2.92·43-s + 3.40·47-s + ⋯
L(s)  = 1  + 1.09·5-s + 0.964i·7-s + 1.73i·11-s − 0.277i·13-s − 0.379i·17-s − 1.33·19-s − 0.561·23-s + 0.195·25-s − 1.25·29-s + 0.950i·31-s + 1.05i·35-s + 0.287i·37-s + 1.24i·41-s − 0.446·43-s + 0.497·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.832 - 0.554i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.832 - 0.554i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3744\)    =    \(2^{5} \cdot 3^{2} \cdot 13\)
Sign: $-0.832 - 0.554i$
Analytic conductor: \(29.8959\)
Root analytic conductor: \(5.46772\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3744} (2159, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3744,\ (\ :1/2),\ -0.832 - 0.554i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.280860450\)
\(L(\frac12)\) \(\approx\) \(1.280860450\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + iT \)
good5 \( 1 - 2.44T + 5T^{2} \)
7 \( 1 - 2.55iT - 7T^{2} \)
11 \( 1 - 5.76iT - 11T^{2} \)
17 \( 1 + 1.56iT - 17T^{2} \)
19 \( 1 + 5.82T + 19T^{2} \)
23 \( 1 + 2.69T + 23T^{2} \)
29 \( 1 + 6.76T + 29T^{2} \)
31 \( 1 - 5.29iT - 31T^{2} \)
37 \( 1 - 1.74iT - 37T^{2} \)
41 \( 1 - 7.99iT - 41T^{2} \)
43 \( 1 + 2.92T + 43T^{2} \)
47 \( 1 - 3.40T + 47T^{2} \)
53 \( 1 + 11.0T + 53T^{2} \)
59 \( 1 + 9.66iT - 59T^{2} \)
61 \( 1 + 0.282iT - 61T^{2} \)
67 \( 1 + 12.4T + 67T^{2} \)
71 \( 1 + 1.05T + 71T^{2} \)
73 \( 1 - 10.4T + 73T^{2} \)
79 \( 1 + 7.55iT - 79T^{2} \)
83 \( 1 + 14.2iT - 83T^{2} \)
89 \( 1 + 7.27iT - 89T^{2} \)
97 \( 1 - 4.07T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.009326605125087681050384044382, −8.103650902453833195389047256731, −7.30876367224517582533815114399, −6.42778403415454269691266957413, −5.92953491017795600249070383550, −5.03204851171490763729921035304, −4.48310588132780408966353549250, −3.17852767116840771353837418416, −2.07175316292284769934366657971, −1.83769620952538400029828150283, 0.33073833287498347530691463350, 1.58384759999926321023499124230, 2.47813912331195886062872666230, 3.68123096166209865356848177333, 4.18457479221964825950469349653, 5.46416364724060798751738360769, 5.98439415815892910508993288861, 6.54428140521450675616191603900, 7.50753108584556767051426268534, 8.266391444530999362711929707113

Graph of the $Z$-function along the critical line