L(s) = 1 | + 2.22·5-s − 0.534i·7-s − 2.35i·11-s + i·13-s + 4.78i·17-s + 4.25·19-s − 2.55·23-s − 0.0600·25-s + 8.32·29-s + 0.284i·31-s − 1.18i·35-s + 6.30i·37-s + 4.33i·41-s + 0.666·43-s − 1.10·47-s + ⋯ |
L(s) = 1 | + 0.993·5-s − 0.202i·7-s − 0.710i·11-s + 0.277i·13-s + 1.16i·17-s + 0.975·19-s − 0.532·23-s − 0.0120·25-s + 1.54·29-s + 0.0510i·31-s − 0.200i·35-s + 1.03i·37-s + 0.676i·41-s + 0.101·43-s − 0.160·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.988 - 0.149i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.988 - 0.149i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.399213313\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.399213313\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 - iT \) |
good | 5 | \( 1 - 2.22T + 5T^{2} \) |
| 7 | \( 1 + 0.534iT - 7T^{2} \) |
| 11 | \( 1 + 2.35iT - 11T^{2} \) |
| 17 | \( 1 - 4.78iT - 17T^{2} \) |
| 19 | \( 1 - 4.25T + 19T^{2} \) |
| 23 | \( 1 + 2.55T + 23T^{2} \) |
| 29 | \( 1 - 8.32T + 29T^{2} \) |
| 31 | \( 1 - 0.284iT - 31T^{2} \) |
| 37 | \( 1 - 6.30iT - 37T^{2} \) |
| 41 | \( 1 - 4.33iT - 41T^{2} \) |
| 43 | \( 1 - 0.666T + 43T^{2} \) |
| 47 | \( 1 + 1.10T + 47T^{2} \) |
| 53 | \( 1 - 1.42T + 53T^{2} \) |
| 59 | \( 1 + 3.21iT - 59T^{2} \) |
| 61 | \( 1 + 4.98iT - 61T^{2} \) |
| 67 | \( 1 + 0.658T + 67T^{2} \) |
| 71 | \( 1 - 12.3T + 71T^{2} \) |
| 73 | \( 1 - 14.1T + 73T^{2} \) |
| 79 | \( 1 - 11.8iT - 79T^{2} \) |
| 83 | \( 1 + 14.7iT - 83T^{2} \) |
| 89 | \( 1 - 1.91iT - 89T^{2} \) |
| 97 | \( 1 + 7.69T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.402972249843610364563025747425, −8.020721261261389126893899760098, −6.86054494315393861851212402652, −6.26684221187054453924828705954, −5.65773840990724816778884792808, −4.83570468373063306079499000547, −3.85091432485324019666380910403, −2.97797001084000658432401506130, −1.96165643182892232420582871004, −1.00244352395638079523561027904,
0.868722437540231590164305010549, 2.10901862874774485845925479496, 2.73040411605090913677467497965, 3.86457547931138321932072448174, 4.91970519084480657701205602064, 5.44789462651773632686385679136, 6.21782147498327825516723417966, 7.04943920887150733354684899548, 7.65389460666832138206325646617, 8.590037250546097242306057686804