Properties

Label 2-3744-24.11-c1-0-41
Degree $2$
Conductor $3744$
Sign $-0.882 + 0.470i$
Analytic cond. $29.8959$
Root an. cond. $5.46772$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.743·5-s − 1.72i·7-s + 4.66i·11-s i·13-s − 6.58i·17-s + 3.02·19-s − 7.02·23-s − 4.44·25-s − 10.3·29-s + 0.619i·31-s − 1.27i·35-s − 0.689i·37-s − 5.53i·41-s − 8.98·43-s + 0.183·47-s + ⋯
L(s)  = 1  + 0.332·5-s − 0.650i·7-s + 1.40i·11-s − 0.277i·13-s − 1.59i·17-s + 0.694·19-s − 1.46·23-s − 0.889·25-s − 1.92·29-s + 0.111i·31-s − 0.216i·35-s − 0.113i·37-s − 0.863i·41-s − 1.37·43-s + 0.0268·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.882 + 0.470i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.882 + 0.470i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3744\)    =    \(2^{5} \cdot 3^{2} \cdot 13\)
Sign: $-0.882 + 0.470i$
Analytic conductor: \(29.8959\)
Root analytic conductor: \(5.46772\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3744} (2159, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3744,\ (\ :1/2),\ -0.882 + 0.470i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6032331793\)
\(L(\frac12)\) \(\approx\) \(0.6032331793\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + iT \)
good5 \( 1 - 0.743T + 5T^{2} \)
7 \( 1 + 1.72iT - 7T^{2} \)
11 \( 1 - 4.66iT - 11T^{2} \)
17 \( 1 + 6.58iT - 17T^{2} \)
19 \( 1 - 3.02T + 19T^{2} \)
23 \( 1 + 7.02T + 23T^{2} \)
29 \( 1 + 10.3T + 29T^{2} \)
31 \( 1 - 0.619iT - 31T^{2} \)
37 \( 1 + 0.689iT - 37T^{2} \)
41 \( 1 + 5.53iT - 41T^{2} \)
43 \( 1 + 8.98T + 43T^{2} \)
47 \( 1 - 0.183T + 47T^{2} \)
53 \( 1 - 10.7T + 53T^{2} \)
59 \( 1 - 13.2iT - 59T^{2} \)
61 \( 1 + 13.1iT - 61T^{2} \)
67 \( 1 + 0.268T + 67T^{2} \)
71 \( 1 + 10.4T + 71T^{2} \)
73 \( 1 - 2.74T + 73T^{2} \)
79 \( 1 + 11.0iT - 79T^{2} \)
83 \( 1 - 6.15iT - 83T^{2} \)
89 \( 1 - 13.1iT - 89T^{2} \)
97 \( 1 + 17.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.022719879710425179244187950404, −7.25593240580942699932042680383, −7.09592597496816931538089154553, −5.82582784839384060139237031561, −5.24884202428413044860694916996, −4.33063270134168360413015295642, −3.63386249100021432935277068181, −2.43861643791720205164756021476, −1.63935798989195224856962313434, −0.16366685192399530136192189425, 1.49001231999900356789875510660, 2.32339234506745783058976427940, 3.50620650039057922545680401059, 4.00854495077197658311291745892, 5.37533222447462395284056705582, 5.86491286986530813584991453333, 6.31281189001710313803379791766, 7.47755820413440962469960004771, 8.236521542813833716077772531264, 8.690342563994159326836849501778

Graph of the $Z$-function along the critical line