L(s) = 1 | − 0.327·5-s − 2.84i·7-s + 1.48i·11-s − i·13-s + 0.756i·17-s − 4.98·19-s − 2.71·23-s − 4.89·25-s + 2.16·29-s − 3.62i·31-s + 0.930i·35-s + 10.0i·37-s + 11.3i·41-s − 2.76·43-s + 9.45·47-s + ⋯ |
L(s) = 1 | − 0.146·5-s − 1.07i·7-s + 0.448i·11-s − 0.277i·13-s + 0.183i·17-s − 1.14·19-s − 0.566·23-s − 0.978·25-s + 0.402·29-s − 0.650i·31-s + 0.157i·35-s + 1.65i·37-s + 1.77i·41-s − 0.422·43-s + 1.37·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.371 - 0.928i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.371 - 0.928i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6353324216\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6353324216\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + iT \) |
good | 5 | \( 1 + 0.327T + 5T^{2} \) |
| 7 | \( 1 + 2.84iT - 7T^{2} \) |
| 11 | \( 1 - 1.48iT - 11T^{2} \) |
| 17 | \( 1 - 0.756iT - 17T^{2} \) |
| 19 | \( 1 + 4.98T + 19T^{2} \) |
| 23 | \( 1 + 2.71T + 23T^{2} \) |
| 29 | \( 1 - 2.16T + 29T^{2} \) |
| 31 | \( 1 + 3.62iT - 31T^{2} \) |
| 37 | \( 1 - 10.0iT - 37T^{2} \) |
| 41 | \( 1 - 11.3iT - 41T^{2} \) |
| 43 | \( 1 + 2.76T + 43T^{2} \) |
| 47 | \( 1 - 9.45T + 47T^{2} \) |
| 53 | \( 1 + 3.68T + 53T^{2} \) |
| 59 | \( 1 + 2.06iT - 59T^{2} \) |
| 61 | \( 1 - 8.28iT - 61T^{2} \) |
| 67 | \( 1 + 12.1T + 67T^{2} \) |
| 71 | \( 1 + 1.67T + 71T^{2} \) |
| 73 | \( 1 - 4.79T + 73T^{2} \) |
| 79 | \( 1 + 1.01iT - 79T^{2} \) |
| 83 | \( 1 + 12.2iT - 83T^{2} \) |
| 89 | \( 1 - 3.19iT - 89T^{2} \) |
| 97 | \( 1 + 5.62T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.595347263938391321657812710529, −7.925213611161362165567717099035, −7.38658490541966745025401675130, −6.49279086160388001335850988022, −5.94662614297639811917418513955, −4.68950592097442374461770299337, −4.26194551541819881950663247336, −3.38554233021962467465831387397, −2.27691502246541626610032761119, −1.16937647021588890538527556877,
0.19025237178478889791683899578, 1.86648158124758708607161838077, 2.55156597904372135181691202910, 3.66483556913828885251342725554, 4.39122634803306463170311316621, 5.49436622890339845132231238998, 5.90361030604584096194450944546, 6.77224583660377731358082613720, 7.59893897214412792050809520566, 8.450802171374978651252204011421