Properties

Label 2-3744-24.11-c1-0-3
Degree $2$
Conductor $3744$
Sign $-0.371 - 0.928i$
Analytic cond. $29.8959$
Root an. cond. $5.46772$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.327·5-s − 2.84i·7-s + 1.48i·11-s i·13-s + 0.756i·17-s − 4.98·19-s − 2.71·23-s − 4.89·25-s + 2.16·29-s − 3.62i·31-s + 0.930i·35-s + 10.0i·37-s + 11.3i·41-s − 2.76·43-s + 9.45·47-s + ⋯
L(s)  = 1  − 0.146·5-s − 1.07i·7-s + 0.448i·11-s − 0.277i·13-s + 0.183i·17-s − 1.14·19-s − 0.566·23-s − 0.978·25-s + 0.402·29-s − 0.650i·31-s + 0.157i·35-s + 1.65i·37-s + 1.77i·41-s − 0.422·43-s + 1.37·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.371 - 0.928i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.371 - 0.928i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3744\)    =    \(2^{5} \cdot 3^{2} \cdot 13\)
Sign: $-0.371 - 0.928i$
Analytic conductor: \(29.8959\)
Root analytic conductor: \(5.46772\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3744} (2159, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3744,\ (\ :1/2),\ -0.371 - 0.928i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6353324216\)
\(L(\frac12)\) \(\approx\) \(0.6353324216\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + iT \)
good5 \( 1 + 0.327T + 5T^{2} \)
7 \( 1 + 2.84iT - 7T^{2} \)
11 \( 1 - 1.48iT - 11T^{2} \)
17 \( 1 - 0.756iT - 17T^{2} \)
19 \( 1 + 4.98T + 19T^{2} \)
23 \( 1 + 2.71T + 23T^{2} \)
29 \( 1 - 2.16T + 29T^{2} \)
31 \( 1 + 3.62iT - 31T^{2} \)
37 \( 1 - 10.0iT - 37T^{2} \)
41 \( 1 - 11.3iT - 41T^{2} \)
43 \( 1 + 2.76T + 43T^{2} \)
47 \( 1 - 9.45T + 47T^{2} \)
53 \( 1 + 3.68T + 53T^{2} \)
59 \( 1 + 2.06iT - 59T^{2} \)
61 \( 1 - 8.28iT - 61T^{2} \)
67 \( 1 + 12.1T + 67T^{2} \)
71 \( 1 + 1.67T + 71T^{2} \)
73 \( 1 - 4.79T + 73T^{2} \)
79 \( 1 + 1.01iT - 79T^{2} \)
83 \( 1 + 12.2iT - 83T^{2} \)
89 \( 1 - 3.19iT - 89T^{2} \)
97 \( 1 + 5.62T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.595347263938391321657812710529, −7.925213611161362165567717099035, −7.38658490541966745025401675130, −6.49279086160388001335850988022, −5.94662614297639811917418513955, −4.68950592097442374461770299337, −4.26194551541819881950663247336, −3.38554233021962467465831387397, −2.27691502246541626610032761119, −1.16937647021588890538527556877, 0.19025237178478889791683899578, 1.86648158124758708607161838077, 2.55156597904372135181691202910, 3.66483556913828885251342725554, 4.39122634803306463170311316621, 5.49436622890339845132231238998, 5.90361030604584096194450944546, 6.77224583660377731358082613720, 7.59893897214412792050809520566, 8.450802171374978651252204011421

Graph of the $Z$-function along the critical line