Properties

Label 2-3744-24.11-c1-0-46
Degree $2$
Conductor $3744$
Sign $-0.966 + 0.257i$
Analytic cond. $29.8959$
Root an. cond. $5.46772$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.678·5-s − 4.56i·7-s − 6.10i·11-s + i·13-s − 6.72i·17-s + 1.27·19-s + 5.10·23-s − 4.54·25-s − 1.72·29-s + 2.37i·31-s + 3.09i·35-s − 6.99i·37-s + 2.28i·41-s − 2.68·43-s + 5.32·47-s + ⋯
L(s)  = 1  − 0.303·5-s − 1.72i·7-s − 1.84i·11-s + 0.277i·13-s − 1.63i·17-s + 0.292·19-s + 1.06·23-s − 0.908·25-s − 0.321·29-s + 0.426i·31-s + 0.522i·35-s − 1.15i·37-s + 0.356i·41-s − 0.408·43-s + 0.776·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.966 + 0.257i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.966 + 0.257i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3744\)    =    \(2^{5} \cdot 3^{2} \cdot 13\)
Sign: $-0.966 + 0.257i$
Analytic conductor: \(29.8959\)
Root analytic conductor: \(5.46772\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3744} (2159, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3744,\ (\ :1/2),\ -0.966 + 0.257i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.292523453\)
\(L(\frac12)\) \(\approx\) \(1.292523453\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - iT \)
good5 \( 1 + 0.678T + 5T^{2} \)
7 \( 1 + 4.56iT - 7T^{2} \)
11 \( 1 + 6.10iT - 11T^{2} \)
17 \( 1 + 6.72iT - 17T^{2} \)
19 \( 1 - 1.27T + 19T^{2} \)
23 \( 1 - 5.10T + 23T^{2} \)
29 \( 1 + 1.72T + 29T^{2} \)
31 \( 1 - 2.37iT - 31T^{2} \)
37 \( 1 + 6.99iT - 37T^{2} \)
41 \( 1 - 2.28iT - 41T^{2} \)
43 \( 1 + 2.68T + 43T^{2} \)
47 \( 1 - 5.32T + 47T^{2} \)
53 \( 1 - 6.35T + 53T^{2} \)
59 \( 1 - 4.46iT - 59T^{2} \)
61 \( 1 - 6.35iT - 61T^{2} \)
67 \( 1 + 10.0T + 67T^{2} \)
71 \( 1 - 11.6T + 71T^{2} \)
73 \( 1 + 5.82T + 73T^{2} \)
79 \( 1 - 12.6iT - 79T^{2} \)
83 \( 1 + 9.84iT - 83T^{2} \)
89 \( 1 - 15.8iT - 89T^{2} \)
97 \( 1 - 6.95T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.088111248438980492923844479622, −7.28713644485842573669975927729, −7.00146465252343265218206098075, −5.92266644527255148862510604556, −5.14123622048881539508339574367, −4.18714299552245685218355039712, −3.55147642761754618603365201107, −2.78300805169113211414628492074, −1.11375332538744920565389402832, −0.42055878570487678830610633197, 1.68767223830417391359018554213, 2.31061679303635853518395815389, 3.35910533665282246843556850411, 4.35676233782759663462402840471, 5.13297340133235490378123866242, 5.83170222291493164674002924562, 6.58392723144560418679495079984, 7.47207265354179851465785236008, 8.146312372132101565135584193593, 8.839377825483467377240315318786

Graph of the $Z$-function along the critical line