L(s) = 1 | + 2.49i·5-s + 1.10i·7-s + 3.60i·11-s + (3.49 − 0.890i)13-s − 2·17-s − 1.10i·19-s + 7.20·23-s − 1.21·25-s + 5.20·29-s + 6.09i·31-s − 2.76·35-s − 11.2i·37-s + 7.48i·41-s + 9.42·43-s + 7.60i·47-s + ⋯ |
L(s) = 1 | + 1.11i·5-s + 0.419i·7-s + 1.08i·11-s + (0.969 − 0.246i)13-s − 0.485·17-s − 0.254i·19-s + 1.50·23-s − 0.243·25-s + 0.967·29-s + 1.09i·31-s − 0.467·35-s − 1.84i·37-s + 1.16i·41-s + 1.43·43-s + 1.10i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.246 - 0.969i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.246 - 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.939898487\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.939898487\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-3.49 + 0.890i)T \) |
good | 5 | \( 1 - 2.49iT - 5T^{2} \) |
| 7 | \( 1 - 1.10iT - 7T^{2} \) |
| 11 | \( 1 - 3.60iT - 11T^{2} \) |
| 17 | \( 1 + 2T + 17T^{2} \) |
| 19 | \( 1 + 1.10iT - 19T^{2} \) |
| 23 | \( 1 - 7.20T + 23T^{2} \) |
| 29 | \( 1 - 5.20T + 29T^{2} \) |
| 31 | \( 1 - 6.09iT - 31T^{2} \) |
| 37 | \( 1 + 11.2iT - 37T^{2} \) |
| 41 | \( 1 - 7.48iT - 41T^{2} \) |
| 43 | \( 1 - 9.42T + 43T^{2} \) |
| 47 | \( 1 - 7.60iT - 47T^{2} \) |
| 53 | \( 1 + 4.76T + 53T^{2} \) |
| 59 | \( 1 + 1.38iT - 59T^{2} \) |
| 61 | \( 1 + 10.1T + 61T^{2} \) |
| 67 | \( 1 - 11.8iT - 67T^{2} \) |
| 71 | \( 1 + 1.82iT - 71T^{2} \) |
| 73 | \( 1 + 4.98iT - 73T^{2} \) |
| 79 | \( 1 - 0.439T + 79T^{2} \) |
| 83 | \( 1 - 0.591iT - 83T^{2} \) |
| 89 | \( 1 - 1.06iT - 89T^{2} \) |
| 97 | \( 1 - 3.01iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.898069589367349714658212400430, −7.86564338747975383808814641024, −7.13389473539864331019440202579, −6.62756818517701551331759390961, −5.88062046973120450543327046320, −4.92322587568926346984298351794, −4.12390833041535023152819713224, −3.03074869785478444462703760658, −2.52988889555138227988619230165, −1.26412455998469814943594960395,
0.65778630066444938655397007697, 1.36837807882616828669429223473, 2.78526834288783365915698990580, 3.73874962781513430449925281904, 4.49252696822193868730798132719, 5.24483343868409091685548579144, 6.05823102151408994116330772136, 6.73165033135275169603996496871, 7.70742148866971143644795806267, 8.542861971290426997483352716639