| L(s) = 1 | + (0.809 − 0.587i)3-s + 0.0622·5-s + (−0.862 − 2.65i)7-s + (0.309 − 0.951i)9-s + (0.106 + 0.326i)11-s + (3.84 − 2.79i)13-s + (0.0503 − 0.0365i)15-s + (1.85 − 5.71i)17-s + (0.449 + 0.326i)19-s + (−2.25 − 1.64i)21-s + (−2.07 + 6.38i)23-s − 4.99·25-s + (−0.309 − 0.951i)27-s + (7.02 + 5.10i)29-s + (3.66 − 4.19i)31-s + ⋯ |
| L(s) = 1 | + (0.467 − 0.339i)3-s + 0.0278·5-s + (−0.326 − 1.00i)7-s + (0.103 − 0.317i)9-s + (0.0320 + 0.0984i)11-s + (1.06 − 0.774i)13-s + (0.0130 − 0.00944i)15-s + (0.450 − 1.38i)17-s + (0.103 + 0.0749i)19-s + (−0.492 − 0.358i)21-s + (−0.432 + 1.33i)23-s − 0.999·25-s + (−0.0594 − 0.183i)27-s + (1.30 + 0.947i)29-s + (0.658 − 0.752i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 372 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.499 + 0.866i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 372 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.499 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.33493 - 0.771280i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.33493 - 0.771280i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.809 + 0.587i)T \) |
| 31 | \( 1 + (-3.66 + 4.19i)T \) |
| good | 5 | \( 1 - 0.0622T + 5T^{2} \) |
| 7 | \( 1 + (0.862 + 2.65i)T + (-5.66 + 4.11i)T^{2} \) |
| 11 | \( 1 + (-0.106 - 0.326i)T + (-8.89 + 6.46i)T^{2} \) |
| 13 | \( 1 + (-3.84 + 2.79i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-1.85 + 5.71i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (-0.449 - 0.326i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (2.07 - 6.38i)T + (-18.6 - 13.5i)T^{2} \) |
| 29 | \( 1 + (-7.02 - 5.10i)T + (8.96 + 27.5i)T^{2} \) |
| 37 | \( 1 + 3.79T + 37T^{2} \) |
| 41 | \( 1 + (-4.09 - 2.97i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + (5.15 + 3.74i)T + (13.2 + 40.8i)T^{2} \) |
| 47 | \( 1 + (6.49 - 4.71i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (2.54 - 7.83i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (0.800 - 0.581i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 - 11.6T + 61T^{2} \) |
| 67 | \( 1 - 1.52T + 67T^{2} \) |
| 71 | \( 1 + (2.45 - 7.55i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (-0.0299 - 0.0921i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (4.52 - 13.9i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (4.00 + 2.91i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + (-2.65 - 8.15i)T + (-72.0 + 52.3i)T^{2} \) |
| 97 | \( 1 + (-1.92 - 5.93i)T + (-78.4 + 57.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.26340944419717762014098337932, −10.17120736453452069984970103515, −9.528843637240633929304925097067, −8.283020725818584946893050462045, −7.53522766694041030566104517913, −6.62778117047542841132938630893, −5.43143911916367035276116284075, −3.95939403870806384603038863558, −3.00210448483545998724929444067, −1.11633582173372723113853231525,
1.99031961100506765360296178708, 3.35676573982784945528624683702, 4.45153540119455070602534370597, 5.88349385113899201703647573598, 6.56982889899951388220253333900, 8.326164569843087199383913848162, 8.527994649597981920958459280178, 9.723598157363354225841832168001, 10.46418763046627339571987496592, 11.61749705966516957608634901152