L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.241 + 0.900i)3-s + (−0.499 − 0.866i)4-s + (2.17 − 0.519i)5-s + (−0.658 − 0.658i)6-s + (0.596 − 2.22i)7-s + 0.999·8-s + (1.84 + 1.06i)9-s + (−0.637 + 2.14i)10-s − 4.55i·11-s + (0.900 − 0.241i)12-s + (−2.24 − 3.88i)13-s + (1.62 + 1.62i)14-s + (−0.0572 + 2.08i)15-s + (−0.5 + 0.866i)16-s + (0.121 + 0.0699i)17-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.139 + 0.519i)3-s + (−0.249 − 0.433i)4-s + (0.972 − 0.232i)5-s + (−0.269 − 0.269i)6-s + (0.225 − 0.841i)7-s + 0.353·8-s + (0.615 + 0.355i)9-s + (−0.201 + 0.677i)10-s − 1.37i·11-s + (0.259 − 0.0696i)12-s + (−0.622 − 1.07i)13-s + (0.435 + 0.435i)14-s + (−0.0147 + 0.537i)15-s + (−0.125 + 0.216i)16-s + (0.0293 + 0.0169i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.946 - 0.322i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.946 - 0.322i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.28191 + 0.212670i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.28191 + 0.212670i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 5 | \( 1 + (-2.17 + 0.519i)T \) |
| 37 | \( 1 + (2.51 - 5.53i)T \) |
good | 3 | \( 1 + (0.241 - 0.900i)T + (-2.59 - 1.5i)T^{2} \) |
| 7 | \( 1 + (-0.596 + 2.22i)T + (-6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + 4.55iT - 11T^{2} \) |
| 13 | \( 1 + (2.24 + 3.88i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.121 - 0.0699i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.17 - 1.11i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 - 0.446T + 23T^{2} \) |
| 29 | \( 1 + (-4.72 - 4.72i)T + 29iT^{2} \) |
| 31 | \( 1 + (4.75 - 4.75i)T - 31iT^{2} \) |
| 41 | \( 1 + (-1.14 + 0.659i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + 9.82T + 43T^{2} \) |
| 47 | \( 1 + (-4.73 - 4.73i)T + 47iT^{2} \) |
| 53 | \( 1 + (0.694 + 2.59i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (2.78 + 10.3i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-10.7 - 2.88i)T + (52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (8.53 + 2.28i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (7.49 + 12.9i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-3.51 - 3.51i)T + 73iT^{2} \) |
| 79 | \( 1 + (-8.56 - 2.29i)T + (68.4 + 39.5i)T^{2} \) |
| 83 | \( 1 + (-0.647 - 2.41i)T + (-71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 + (17.1 - 4.58i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 - 11.6iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.95224385634253901195735672682, −10.37721713794618902336258157906, −9.738956786600275880682425028761, −8.669817493296787716749204127620, −7.72159650729549086687091000952, −6.70948478861976866827801117838, −5.47574017364619384850717320524, −4.91596063157079365099296687593, −3.31039309656927263989363384343, −1.19383863532323832498297540449,
1.69476201171934995485527908276, 2.45678291400891107132686192695, 4.32271886074056810325727401985, 5.50032122260540275780474743813, 6.80181834924241748686430076424, 7.42523630346804766148505342898, 8.935964792673732921134572024579, 9.630988702798691824637141300505, 10.17279741327359662512949360756, 11.61298215238718135634583418485