| L(s) = 1 | + (0.866 + 0.5i)2-s + (0.264 + 0.458i)3-s + (0.499 + 0.866i)4-s + (0.866 − 0.5i)5-s + 0.529i·6-s + (1.80 + 3.11i)7-s + 0.999i·8-s + (1.35 − 2.35i)9-s + 0.999·10-s − 1.82·11-s + (−0.264 + 0.458i)12-s + (−2.25 + 1.30i)13-s + 3.60i·14-s + (0.458 + 0.264i)15-s + (−0.5 + 0.866i)16-s + (−3.42 − 1.97i)17-s + ⋯ |
| L(s) = 1 | + (0.612 + 0.353i)2-s + (0.152 + 0.264i)3-s + (0.249 + 0.433i)4-s + (0.387 − 0.223i)5-s + 0.216i·6-s + (0.680 + 1.17i)7-s + 0.353i·8-s + (0.453 − 0.785i)9-s + 0.316·10-s − 0.549·11-s + (−0.0764 + 0.132i)12-s + (−0.624 + 0.360i)13-s + 0.962i·14-s + (0.118 + 0.0683i)15-s + (−0.125 + 0.216i)16-s + (−0.830 − 0.479i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.546 - 0.837i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.546 - 0.837i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.90534 + 1.03162i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.90534 + 1.03162i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 5 | \( 1 + (-0.866 + 0.5i)T \) |
| 37 | \( 1 + (4.20 + 4.39i)T \) |
| good | 3 | \( 1 + (-0.264 - 0.458i)T + (-1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + (-1.80 - 3.11i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + 1.82T + 11T^{2} \) |
| 13 | \( 1 + (2.25 - 1.30i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (3.42 + 1.97i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-6.48 + 3.74i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 6.10iT - 23T^{2} \) |
| 29 | \( 1 - 7.96iT - 29T^{2} \) |
| 31 | \( 1 + 3.44iT - 31T^{2} \) |
| 41 | \( 1 + (5.37 + 9.31i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + 6.69iT - 43T^{2} \) |
| 47 | \( 1 + 0.773T + 47T^{2} \) |
| 53 | \( 1 + (-0.605 + 1.04i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (9.93 + 5.73i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.69 - 1.55i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.92 + 5.05i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (4.05 + 7.02i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 11.9T + 73T^{2} \) |
| 79 | \( 1 + (-12.0 + 6.97i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (2.08 - 3.61i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-15.4 - 8.92i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 10.2iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.87907937842104586996251781881, −10.76462322428909712209125116125, −9.262165940084086611781901289814, −9.093352261155529607008910261617, −7.63688247856466239513233339111, −6.75139998905118534123996833222, −5.33885880731211719019389695275, −4.99756577945101958476152997763, −3.41521509537541235491232491017, −2.10099003952555815849736327222,
1.51672010746872932913538164901, 2.82946863644594761967556940029, 4.35346511750686696119729352152, 5.09336339102623139593109006873, 6.45971589355692856841334550803, 7.51200190977671030518460948333, 8.150274005478485403435264625354, 9.910180794238483300353392701978, 10.38598799379366263686406248334, 11.16845495163881528465130124807