L(s) = 1 | + (0.866 + 0.5i)2-s + (0.965 + 0.258i)3-s + (0.707 + 0.707i)6-s − i·8-s + (0.866 + 0.499i)9-s + (0.866 − 0.5i)11-s − 1.41·13-s + (0.5 − 0.866i)16-s + (1.22 − 0.707i)17-s + (0.5 + 0.866i)18-s + 0.999·22-s + (−0.866 − 0.5i)23-s + (0.258 − 0.965i)24-s + (−1.22 − 0.707i)26-s + (0.707 + 0.707i)27-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (0.965 + 0.258i)3-s + (0.707 + 0.707i)6-s − i·8-s + (0.866 + 0.499i)9-s + (0.866 − 0.5i)11-s − 1.41·13-s + (0.5 − 0.866i)16-s + (1.22 − 0.707i)17-s + (0.5 + 0.866i)18-s + 0.999·22-s + (−0.866 − 0.5i)23-s + (0.258 − 0.965i)24-s + (−1.22 − 0.707i)26-s + (0.707 + 0.707i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.982 - 0.188i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.982 - 0.188i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.763316750\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.763316750\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.965 - 0.258i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + 1.41T + T^{2} \) |
| 17 | \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 - iT - T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 - 1.41iT - T^{2} \) |
| 43 | \( 1 - T + T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - iT - T^{2} \) |
| 73 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.841747307753403674700813658776, −7.67109513451859361052745850212, −7.39427261279431096771284435236, −6.43819387734568530972489122379, −5.65633355891408140465085672839, −4.80570003028843598866454580829, −4.24904555359280955996702526816, −3.37954727658765970461432211318, −2.64696323198864025968511512521, −1.25473568343187657848978236910,
1.62430878052678876931228914385, 2.37971691273080649180534669148, 3.24510002881566207448555937634, 3.99129635932580318885005263597, 4.53964302991665438914838641201, 5.53442987796266569850630379080, 6.41739270996413063209104450442, 7.49211375817195530229080123992, 7.81698931607121278524544504271, 8.612135005639810800720168099740