L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.965 − 0.258i)3-s + (−0.707 − 0.707i)6-s − 8-s + (0.866 − 0.499i)9-s + (−0.866 − 0.5i)11-s − 1.41i·13-s + (0.5 + 0.866i)16-s + (−0.707 + 1.22i)17-s + (−0.866 − 0.5i)18-s + 0.999i·22-s + (−0.5 − 0.866i)23-s + (−0.965 + 0.258i)24-s + (−1.22 + 0.707i)26-s + (0.707 − 0.707i)27-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.965 − 0.258i)3-s + (−0.707 − 0.707i)6-s − 8-s + (0.866 − 0.499i)9-s + (−0.866 − 0.5i)11-s − 1.41i·13-s + (0.5 + 0.866i)16-s + (−0.707 + 1.22i)17-s + (−0.866 − 0.5i)18-s + 0.999i·22-s + (−0.5 − 0.866i)23-s + (−0.965 + 0.258i)24-s + (−1.22 + 0.707i)26-s + (0.707 − 0.707i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.992 + 0.122i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.992 + 0.122i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.107100508\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.107100508\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.965 + 0.258i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + 1.41iT - T^{2} \) |
| 17 | \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + iT - T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + 1.41iT - T^{2} \) |
| 43 | \( 1 + iT - T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - iT - T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.532938758001575195802227240532, −7.972784162761310192817684453498, −7.04699024133092450816471285549, −6.09661851862929164953356637038, −5.48054869937406398530893668709, −4.14831642020703098730649016687, −3.33813754794851567005113545369, −2.55763881049289271673560503667, −1.93945323010125267684490845348, −0.61531571448270503956895222268,
1.86535922565505144281104896577, 2.70772812086220422238776770766, 3.56835048788202005722320990389, 4.59017079422324539550047051134, 5.26016398421004325251766986458, 6.50972699171485293123798129450, 7.04916028426963414469379609620, 7.60504579436333153981505024994, 8.269406463953715616312062446652, 9.004541780934573211349971417224