L(s) = 1 | + (0.866 + 0.5i)3-s + (0.5 − 0.866i)4-s + (0.499 + 0.866i)9-s + (0.866 − 0.499i)12-s + i·13-s + (−0.499 − 0.866i)16-s + (0.5 + 0.866i)19-s + 0.999i·27-s + (1 − 1.73i)31-s + 0.999·36-s + (0.866 − 0.5i)37-s + (−0.5 + 0.866i)39-s + 2i·43-s − 0.999i·48-s + (0.866 + 0.5i)52-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)3-s + (0.5 − 0.866i)4-s + (0.499 + 0.866i)9-s + (0.866 − 0.499i)12-s + i·13-s + (−0.499 − 0.866i)16-s + (0.5 + 0.866i)19-s + 0.999i·27-s + (1 − 1.73i)31-s + 0.999·36-s + (0.866 − 0.5i)37-s + (−0.5 + 0.866i)39-s + 2i·43-s − 0.999i·48-s + (0.866 + 0.5i)52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.982 - 0.185i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.982 - 0.185i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.020483466\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.020483466\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - iT - T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - 2iT - T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.894882942940799193073941394312, −7.896917070676018539786735905178, −7.45304383549842092861071384948, −6.38951169852472361362294276714, −5.86554114594662525696287993542, −4.75699986730134726110633825330, −4.23451733100877893075091427592, −3.12309477230480353186186077405, −2.26877293931879172798436840643, −1.41504440321958248405963479284,
1.23400903229758329799400418931, 2.52015724114339707443049677301, 2.99317424055558212055139518912, 3.77701259269339771140015573393, 4.76888376393792232929542330680, 5.86761196510298996468311499597, 6.82827990600576749597172352847, 7.22633428667474485386455152590, 7.982874890923882595489507873991, 8.551804133345821459429075721686