Properties

Label 2-3675-105.62-c0-0-3
Degree $2$
Conductor $3675$
Sign $-0.663 - 0.747i$
Analytic cond. $1.83406$
Root an. cond. $1.35427$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 + 0.707i)3-s + i·4-s + 1.00i·9-s + (−0.707 + 0.707i)12-s + (0.707 + 0.707i)13-s − 16-s − 1.73·19-s + (−0.707 + 0.707i)27-s − 1.00·36-s + (1.22 + 1.22i)37-s + 1.00i·39-s + (−0.707 − 0.707i)48-s + (−0.707 + 0.707i)52-s + (−1.22 − 1.22i)57-s − 1.73i·61-s + ⋯
L(s)  = 1  + (0.707 + 0.707i)3-s + i·4-s + 1.00i·9-s + (−0.707 + 0.707i)12-s + (0.707 + 0.707i)13-s − 16-s − 1.73·19-s + (−0.707 + 0.707i)27-s − 1.00·36-s + (1.22 + 1.22i)37-s + 1.00i·39-s + (−0.707 − 0.707i)48-s + (−0.707 + 0.707i)52-s + (−1.22 − 1.22i)57-s − 1.73i·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.663 - 0.747i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.663 - 0.747i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3675\)    =    \(3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $-0.663 - 0.747i$
Analytic conductor: \(1.83406\)
Root analytic conductor: \(1.35427\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3675} (2057, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3675,\ (\ :0),\ -0.663 - 0.747i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.483269288\)
\(L(\frac12)\) \(\approx\) \(1.483269288\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.707 - 0.707i)T \)
5 \( 1 \)
7 \( 1 \)
good2 \( 1 - iT^{2} \)
11 \( 1 - T^{2} \)
13 \( 1 + (-0.707 - 0.707i)T + iT^{2} \)
17 \( 1 + iT^{2} \)
19 \( 1 + 1.73T + T^{2} \)
23 \( 1 + iT^{2} \)
29 \( 1 + T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 + (-1.22 - 1.22i)T + iT^{2} \)
41 \( 1 + T^{2} \)
43 \( 1 - iT^{2} \)
47 \( 1 + iT^{2} \)
53 \( 1 + iT^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 + 1.73iT - T^{2} \)
67 \( 1 + (-1.22 - 1.22i)T + iT^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 + (0.707 + 0.707i)T + iT^{2} \)
79 \( 1 - iT - T^{2} \)
83 \( 1 - iT^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 + (-0.707 + 0.707i)T - iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.775193041117179360422559249010, −8.395956648461132294615504605198, −7.76420733156118277783071115454, −6.82399358164321471829985688261, −6.14791212109704037444819728829, −4.85011244277553467666113304648, −4.23595450927420941899885737659, −3.64032262501995005123240550149, −2.73402254539154616757548867906, −1.91255414797703582731105215428, 0.76506401512182808837117888086, 1.86794329364619402023254711624, 2.61583501372867092449864630700, 3.75986085864794475963804474927, 4.56266064121871435688105310593, 5.75508684672262247800366537347, 6.16675262596694096033160420076, 6.91634192115852283163563981567, 7.74695589850761343085033311131, 8.523473537151537793524987800729

Graph of the $Z$-function along the critical line