L(s) = 1 | + (0.707 + 0.707i)3-s + i·4-s + 1.00i·9-s + (−0.707 + 0.707i)12-s + (0.707 + 0.707i)13-s − 16-s − 1.73·19-s + (−0.707 + 0.707i)27-s − 1.00·36-s + (1.22 + 1.22i)37-s + 1.00i·39-s + (−0.707 − 0.707i)48-s + (−0.707 + 0.707i)52-s + (−1.22 − 1.22i)57-s − 1.73i·61-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)3-s + i·4-s + 1.00i·9-s + (−0.707 + 0.707i)12-s + (0.707 + 0.707i)13-s − 16-s − 1.73·19-s + (−0.707 + 0.707i)27-s − 1.00·36-s + (1.22 + 1.22i)37-s + 1.00i·39-s + (−0.707 − 0.707i)48-s + (−0.707 + 0.707i)52-s + (−1.22 − 1.22i)57-s − 1.73i·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.663 - 0.747i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.663 - 0.747i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.483269288\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.483269288\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - iT^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + 1.73T + T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (-1.22 - 1.22i)T + iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + 1.73iT - T^{2} \) |
| 67 | \( 1 + (-1.22 - 1.22i)T + iT^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 79 | \( 1 - iT - T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.775193041117179360422559249010, −8.395956648461132294615504605198, −7.76420733156118277783071115454, −6.82399358164321471829985688261, −6.14791212109704037444819728829, −4.85011244277553467666113304648, −4.23595450927420941899885737659, −3.64032262501995005123240550149, −2.73402254539154616757548867906, −1.91255414797703582731105215428,
0.76506401512182808837117888086, 1.86794329364619402023254711624, 2.61583501372867092449864630700, 3.75986085864794475963804474927, 4.56266064121871435688105310593, 5.75508684672262247800366537347, 6.16675262596694096033160420076, 6.91634192115852283163563981567, 7.74695589850761343085033311131, 8.523473537151537793524987800729