L(s) = 1 | + 2-s + (0.707 − 0.707i)3-s + (0.707 − 0.707i)6-s − 8-s − 1.00i·9-s − i·11-s − 1.41i·13-s − 16-s − 1.41·17-s − 1.00i·18-s − i·22-s + 23-s + (−0.707 + 0.707i)24-s − 1.41i·26-s + (−0.707 − 0.707i)27-s + ⋯ |
L(s) = 1 | + 2-s + (0.707 − 0.707i)3-s + (0.707 − 0.707i)6-s − 8-s − 1.00i·9-s − i·11-s − 1.41i·13-s − 16-s − 1.41·17-s − 1.00i·18-s − i·22-s + 23-s + (−0.707 + 0.707i)24-s − 1.41i·26-s + (−0.707 − 0.707i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.316 + 0.948i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.316 + 0.948i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.019232012\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.019232012\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - T + T^{2} \) |
| 11 | \( 1 + iT - T^{2} \) |
| 13 | \( 1 + 1.41iT - T^{2} \) |
| 17 | \( 1 + 1.41T + T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 - T + T^{2} \) |
| 29 | \( 1 - iT - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - iT - T^{2} \) |
| 41 | \( 1 + 1.41iT - T^{2} \) |
| 43 | \( 1 - iT - T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + 1.41iT - T^{2} \) |
| 61 | \( 1 - 1.41T + T^{2} \) |
| 67 | \( 1 + iT - T^{2} \) |
| 71 | \( 1 + iT - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - 1.41iT - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.561778164716338305902066072440, −7.79575681904382771832224284145, −6.79373269364118795539301154120, −6.27399025797627996991070984045, −5.41198716296725144750068194413, −4.73028675993986301333392718250, −3.54241573000367919136930449852, −3.19629348921094898149483370976, −2.28833442704790488035368851254, −0.74430272196132175298441590229,
2.03289039338714900240062601783, 2.67745929481078779548918971847, 3.83109395389377647197545016913, 4.36904262518443610069134769195, 4.76403826014019186605322703975, 5.70673311388995692299048142228, 6.71996137400106491116957929461, 7.26029199277723352385276479401, 8.445483156448179180100285991983, 9.004010692094912627080227857349