L(s) = 1 | − 2-s + (0.707 + 0.707i)3-s + (−0.707 − 0.707i)6-s + 8-s + 1.00i·9-s + i·11-s + 1.41i·13-s − 16-s − 1.41·17-s − 1.00i·18-s − i·22-s − 23-s + (0.707 + 0.707i)24-s − 1.41i·26-s + (−0.707 + 0.707i)27-s + ⋯ |
L(s) = 1 | − 2-s + (0.707 + 0.707i)3-s + (−0.707 − 0.707i)6-s + 8-s + 1.00i·9-s + i·11-s + 1.41i·13-s − 16-s − 1.41·17-s − 1.00i·18-s − i·22-s − 23-s + (0.707 + 0.707i)24-s − 1.41i·26-s + (−0.707 + 0.707i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.948 - 0.316i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.948 - 0.316i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5568720140\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5568720140\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + T + T^{2} \) |
| 11 | \( 1 - iT - T^{2} \) |
| 13 | \( 1 - 1.41iT - T^{2} \) |
| 17 | \( 1 + 1.41T + T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + T + T^{2} \) |
| 29 | \( 1 + iT - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - iT - T^{2} \) |
| 41 | \( 1 + 1.41iT - T^{2} \) |
| 43 | \( 1 - iT - T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + 1.41iT - T^{2} \) |
| 61 | \( 1 + 1.41T + T^{2} \) |
| 67 | \( 1 + iT - T^{2} \) |
| 71 | \( 1 - iT - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - 1.41iT - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.192946615647820360023325919207, −8.447673436058734168069123662995, −7.85081341484344483932483860363, −7.08706979724893767241091599894, −6.33197735699405715670802193157, −4.88715909145841024009092962426, −4.44420968322169307392502041715, −3.81894230768888089259797642934, −2.29190503396621621049070643934, −1.81608384955572879865044446536,
0.40656867756388143796712169822, 1.54175561967873608513316911049, 2.59382639009614891449122552963, 3.49112969184769902233810546635, 4.43301633134307887712851119469, 5.58065471804084369965885004206, 6.34854059475098032613612417502, 7.26013181267573919130345336325, 7.83307958526536724639068522199, 8.485925429962475856757411600388