Properties

Label 4-3675e2-1.1-c0e2-0-2
Degree $4$
Conductor $13505625$
Sign $1$
Analytic cond. $3.36379$
Root an. cond. $1.35427$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 9-s + 3·16-s + 2·19-s + 4·31-s + 2·36-s − 2·61-s − 4·64-s − 4·76-s + 2·79-s + 81-s + 2·109-s + 2·121-s − 8·124-s + 127-s + 131-s + 137-s + 139-s − 3·144-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s − 2·171-s + 173-s + ⋯
L(s)  = 1  − 2·4-s − 9-s + 3·16-s + 2·19-s + 4·31-s + 2·36-s − 2·61-s − 4·64-s − 4·76-s + 2·79-s + 81-s + 2·109-s + 2·121-s − 8·124-s + 127-s + 131-s + 137-s + 139-s − 3·144-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s − 2·171-s + 173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13505625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13505625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(13505625\)    =    \(3^{2} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(3.36379\)
Root analytic conductor: \(1.35427\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 13505625,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9047571002\)
\(L(\frac12)\) \(\approx\) \(0.9047571002\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + T^{2} \)
5 \( 1 \)
7 \( 1 \)
good2$C_2$ \( ( 1 + T^{2} )^{2} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
13$C_2^2$ \( 1 - T^{2} + T^{4} \)
17$C_2$ \( ( 1 + T^{2} )^{2} \)
19$C_2$ \( ( 1 - T + T^{2} )^{2} \)
23$C_2$ \( ( 1 + T^{2} )^{2} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_1$ \( ( 1 - T )^{4} \)
37$C_2^2$ \( 1 - T^{2} + T^{4} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_2$ \( ( 1 + T^{2} )^{2} \)
47$C_2$ \( ( 1 + T^{2} )^{2} \)
53$C_2$ \( ( 1 + T^{2} )^{2} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
61$C_2$ \( ( 1 + T + T^{2} )^{2} \)
67$C_2^2$ \( 1 - T^{2} + T^{4} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_2^2$ \( 1 - T^{2} + T^{4} \)
79$C_2$ \( ( 1 - T + T^{2} )^{2} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_2^2$ \( 1 - T^{2} + T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.900081308112407595395009617072, −8.587397658492804286930549872809, −8.180876631442657523919521986530, −7.85131666767761216617403301025, −7.74600333965871448060914543116, −7.18217574779151980930956789464, −6.39454161943580176961126563383, −6.36265528266144886304107768934, −5.66531677893212505412912027462, −5.60724870331242032306619239667, −4.86721658902835951064928244183, −4.85976528772197147373345262239, −4.45580513022789101715444604662, −3.95945095072030234037523530600, −3.36205106240757318182810814675, −3.02106119192141295114656092404, −2.87805787564232177742981803602, −1.90924684473837826216842209565, −0.969428283997638810696401301606, −0.77875216243639538794843234557, 0.77875216243639538794843234557, 0.969428283997638810696401301606, 1.90924684473837826216842209565, 2.87805787564232177742981803602, 3.02106119192141295114656092404, 3.36205106240757318182810814675, 3.95945095072030234037523530600, 4.45580513022789101715444604662, 4.85976528772197147373345262239, 4.86721658902835951064928244183, 5.60724870331242032306619239667, 5.66531677893212505412912027462, 6.36265528266144886304107768934, 6.39454161943580176961126563383, 7.18217574779151980930956789464, 7.74600333965871448060914543116, 7.85131666767761216617403301025, 8.180876631442657523919521986530, 8.587397658492804286930549872809, 8.900081308112407595395009617072

Graph of the $Z$-function along the critical line