L(s) = 1 | + (0.680 + 0.733i)3-s + (−0.365 + 0.930i)4-s + (−0.997 + 0.0747i)7-s + (−0.0747 + 0.997i)9-s + (−0.930 + 0.365i)12-s + (−0.829 + 1.72i)13-s + (−0.733 − 0.680i)16-s + (0.0747 − 0.129i)19-s + (−0.733 − 0.680i)21-s + (−0.781 + 0.623i)27-s + (0.294 − 0.955i)28-s + (−0.623 − 1.07i)31-s + (−0.900 − 0.433i)36-s + (1.84 − 0.722i)37-s + (−1.82 + 0.563i)39-s + ⋯ |
L(s) = 1 | + (0.680 + 0.733i)3-s + (−0.365 + 0.930i)4-s + (−0.997 + 0.0747i)7-s + (−0.0747 + 0.997i)9-s + (−0.930 + 0.365i)12-s + (−0.829 + 1.72i)13-s + (−0.733 − 0.680i)16-s + (0.0747 − 0.129i)19-s + (−0.733 − 0.680i)21-s + (−0.781 + 0.623i)27-s + (0.294 − 0.955i)28-s + (−0.623 − 1.07i)31-s + (−0.900 − 0.433i)36-s + (1.84 − 0.722i)37-s + (−1.82 + 0.563i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.988 + 0.153i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.988 + 0.153i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8111362859\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8111362859\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.680 - 0.733i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (0.997 - 0.0747i)T \) |
good | 2 | \( 1 + (0.365 - 0.930i)T^{2} \) |
| 11 | \( 1 + (0.988 - 0.149i)T^{2} \) |
| 13 | \( 1 + (0.829 - 1.72i)T + (-0.623 - 0.781i)T^{2} \) |
| 17 | \( 1 + (0.955 + 0.294i)T^{2} \) |
| 19 | \( 1 + (-0.0747 + 0.129i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.955 - 0.294i)T^{2} \) |
| 29 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 31 | \( 1 + (0.623 + 1.07i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-1.84 + 0.722i)T + (0.733 - 0.680i)T^{2} \) |
| 41 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 43 | \( 1 + (1.75 + 0.400i)T + (0.900 + 0.433i)T^{2} \) |
| 47 | \( 1 + (0.365 - 0.930i)T^{2} \) |
| 53 | \( 1 + (-0.733 - 0.680i)T^{2} \) |
| 59 | \( 1 + (-0.826 + 0.563i)T^{2} \) |
| 61 | \( 1 + (-0.266 - 0.680i)T + (-0.733 + 0.680i)T^{2} \) |
| 67 | \( 1 + (1.26 - 0.733i)T + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 73 | \( 1 + (1.11 - 1.63i)T + (-0.365 - 0.930i)T^{2} \) |
| 79 | \( 1 + (-0.365 + 0.632i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.623 - 0.781i)T^{2} \) |
| 89 | \( 1 + (0.988 + 0.149i)T^{2} \) |
| 97 | \( 1 - 1.65iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.113836062131425663272666375471, −8.593223165375874253498612266774, −7.58337329862982734611415023978, −7.14954442744457586308686833389, −6.20181574030962073803339735373, −5.07291923141215410883507084305, −4.22896594503542940311428835593, −3.83354444133529401155849361170, −2.83215111997488231505388053776, −2.19226688621889827676823038325,
0.40992055149658821856707915502, 1.58919346438634634828461735723, 2.81671262156418147206064517528, 3.32691642876654943563647532458, 4.55406879813390610875167782307, 5.47343802829033773250957560674, 6.14541553012638402863614806099, 6.81439729377622293765469838839, 7.62215294038351913012733857132, 8.300072552547829739251811385436