L(s) = 1 | + (0.997 + 0.0747i)3-s + (0.733 + 0.680i)4-s + (0.149 + 0.988i)7-s + (0.988 + 0.149i)9-s + (0.680 + 0.733i)12-s + (−1.29 + 1.03i)13-s + (0.0747 + 0.997i)16-s + (−0.988 − 1.71i)19-s + (0.0747 + 0.997i)21-s + (0.974 + 0.222i)27-s + (−0.563 + 0.826i)28-s + (0.222 − 0.385i)31-s + (0.623 + 0.781i)36-s + (1.29 + 1.40i)37-s + (−1.36 + 0.930i)39-s + ⋯ |
L(s) = 1 | + (0.997 + 0.0747i)3-s + (0.733 + 0.680i)4-s + (0.149 + 0.988i)7-s + (0.988 + 0.149i)9-s + (0.680 + 0.733i)12-s + (−1.29 + 1.03i)13-s + (0.0747 + 0.997i)16-s + (−0.988 − 1.71i)19-s + (0.0747 + 0.997i)21-s + (0.974 + 0.222i)27-s + (−0.563 + 0.826i)28-s + (0.222 − 0.385i)31-s + (0.623 + 0.781i)36-s + (1.29 + 1.40i)37-s + (−1.36 + 0.930i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.329 - 0.944i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.329 - 0.944i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.107874232\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.107874232\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.997 - 0.0747i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-0.149 - 0.988i)T \) |
good | 2 | \( 1 + (-0.733 - 0.680i)T^{2} \) |
| 11 | \( 1 + (-0.955 + 0.294i)T^{2} \) |
| 13 | \( 1 + (1.29 - 1.03i)T + (0.222 - 0.974i)T^{2} \) |
| 17 | \( 1 + (0.826 + 0.563i)T^{2} \) |
| 19 | \( 1 + (0.988 + 1.71i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.826 - 0.563i)T^{2} \) |
| 29 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 31 | \( 1 + (-0.222 + 0.385i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-1.29 - 1.40i)T + (-0.0747 + 0.997i)T^{2} \) |
| 41 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 43 | \( 1 + (-0.541 + 1.12i)T + (-0.623 - 0.781i)T^{2} \) |
| 47 | \( 1 + (-0.733 - 0.680i)T^{2} \) |
| 53 | \( 1 + (0.0747 + 0.997i)T^{2} \) |
| 59 | \( 1 + (-0.365 + 0.930i)T^{2} \) |
| 61 | \( 1 + (-1.07 + 0.997i)T + (0.0747 - 0.997i)T^{2} \) |
| 67 | \( 1 + (-0.129 - 0.0747i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 73 | \( 1 + (1.77 - 0.698i)T + (0.733 - 0.680i)T^{2} \) |
| 79 | \( 1 + (0.733 + 1.26i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.222 - 0.974i)T^{2} \) |
| 89 | \( 1 + (-0.955 - 0.294i)T^{2} \) |
| 97 | \( 1 + 0.730iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.718905645850732619766907004723, −8.273667683786582312869615856249, −7.30799989280692192552803662577, −6.92564712032550437919842433755, −6.08230264218135197710135852198, −4.76698572888470541422906780704, −4.30465316224833022878234695831, −3.05713864427820450180550450318, −2.46547817357438439377740654395, −1.94057935817216066134634701802,
1.07551611303513596067166678743, 2.11203457635563034001877067069, 2.86126533484179673789037998881, 3.87508337459024503329528097408, 4.63592058076986411459634611944, 5.66091970039470883005128205820, 6.44149755040473706864098058538, 7.38383432721754551916488223912, 7.64344967118458373586048472433, 8.378029322272252495578305074362