Properties

Label 48-3675e24-1.1-c0e24-0-1
Degree $48$
Conductor $3.683\times 10^{85}$
Sign $1$
Analytic cond. $2.09868\times 10^{6}$
Root an. cond. $1.35427$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 9-s + 3·16-s + 2·19-s + 4·31-s + 2·36-s − 49-s + 26·61-s − 2·64-s − 4·76-s + 2·79-s + 81-s + 2·109-s + 2·121-s − 8·124-s + 127-s + 131-s + 137-s + 139-s − 3·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s − 2·171-s + ⋯
L(s)  = 1  − 2·4-s − 9-s + 3·16-s + 2·19-s + 4·31-s + 2·36-s − 49-s + 26·61-s − 2·64-s − 4·76-s + 2·79-s + 81-s + 2·109-s + 2·121-s − 8·124-s + 127-s + 131-s + 137-s + 139-s − 3·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s − 2·171-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{24} \cdot 5^{48} \cdot 7^{48}\right)^{s/2} \, \Gamma_{\C}(s)^{24} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{24} \cdot 5^{48} \cdot 7^{48}\right)^{s/2} \, \Gamma_{\C}(s)^{24} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(48\)
Conductor: \(3^{24} \cdot 5^{48} \cdot 7^{48}\)
Sign: $1$
Analytic conductor: \(2.09868\times 10^{6}\)
Root analytic conductor: \(1.35427\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((48,\ 3^{24} \cdot 5^{48} \cdot 7^{48} ,\ ( \ : [0]^{24} ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(15.60915073\)
\(L(\frac12)\) \(\approx\) \(15.60915073\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T^{2} - T^{6} - T^{8} + T^{12} - T^{16} - T^{18} + T^{22} + T^{24} \)
5 \( 1 \)
7 \( 1 + T^{2} - T^{6} - T^{8} + T^{12} - T^{16} - T^{18} + T^{22} + T^{24} \)
good2 \( ( 1 + T^{2} - T^{6} - T^{8} + T^{12} - T^{16} - T^{18} + T^{22} + T^{24} )^{2} \)
11 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{8} + T^{9} - T^{11} + T^{12} )^{2}( 1 + T - T^{3} - T^{4} + T^{6} - T^{8} - T^{9} + T^{11} + T^{12} )^{2} \)
13 \( ( 1 + T^{2} - T^{6} - T^{8} + T^{12} - T^{16} - T^{18} + T^{22} + T^{24} )^{2} \)
17 \( ( 1 + T^{2} - T^{6} - T^{8} + T^{12} - T^{16} - T^{18} + T^{22} + T^{24} )^{2} \)
19 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{4}( 1 + T - T^{3} - T^{4} + T^{6} - T^{8} - T^{9} + T^{11} + T^{12} )^{2} \)
23 \( ( 1 + T^{2} - T^{6} - T^{8} + T^{12} - T^{16} - T^{18} + T^{22} + T^{24} )^{2} \)
29 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{4}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{4} \)
31 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{8} + T^{9} - T^{11} + T^{12} )^{4} \)
37 \( ( 1 - T^{2} + T^{4} )^{6}( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} )^{2} \)
41 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{4}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{4} \)
43 \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} )^{4} \)
47 \( ( 1 + T^{2} - T^{6} - T^{8} + T^{12} - T^{16} - T^{18} + T^{22} + T^{24} )^{2} \)
53 \( ( 1 + T^{2} - T^{6} - T^{8} + T^{12} - T^{16} - T^{18} + T^{22} + T^{24} )^{2} \)
59 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{8} + T^{9} - T^{11} + T^{12} )^{2}( 1 + T - T^{3} - T^{4} + T^{6} - T^{8} - T^{9} + T^{11} + T^{12} )^{2} \)
61 \( ( 1 - T )^{24}( 1 - T + T^{3} - T^{4} + T^{6} - T^{8} + T^{9} - T^{11} + T^{12} )^{2} \)
67 \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} )^{2}( 1 + T^{2} - T^{6} - T^{8} + T^{12} - T^{16} - T^{18} + T^{22} + T^{24} ) \)
71 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{4}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{4} \)
73 \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} )^{2}( 1 + T^{2} - T^{6} - T^{8} + T^{12} - T^{16} - T^{18} + T^{22} + T^{24} ) \)
79 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{4}( 1 + T - T^{3} - T^{4} + T^{6} - T^{8} - T^{9} + T^{11} + T^{12} )^{2} \)
83 \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} )^{4} \)
89 \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{8} + T^{9} - T^{11} + T^{12} )^{2}( 1 + T - T^{3} - T^{4} + T^{6} - T^{8} - T^{9} + T^{11} + T^{12} )^{2} \)
97 \( ( 1 + T^{2} - T^{6} - T^{8} + T^{12} - T^{16} - T^{18} + T^{22} + T^{24} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{48} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−1.85532721287296615303300038292, −1.65661580641095062242087669628, −1.61179772260006406098153003669, −1.58919346438634634828461735723, −1.45751313645617828397654049947, −1.45562218232704193621540482917, −1.43037872556857910893514857325, −1.33773511231653310813865059051, −1.29159883436679084329789261202, −1.25575362270486390265670674630, −1.17768351112663763186241676015, −1.09212850668704230254950859038, −1.07551611303513596067166678743, −0.942150851897989654065633968903, −0.905971922826405355903103998532, −0.815750279121388337909963361285, −0.814543577406772891704453398776, −0.795056512642020629885345788155, −0.78358928242562494509975653641, −0.77105249181775731605265546194, −0.70181475319526073540770129858, −0.66832242621897235069686670292, −0.57023901673805594183742727782, −0.51462947742194570898640725518, −0.40992055149658821856707915502, 0.40992055149658821856707915502, 0.51462947742194570898640725518, 0.57023901673805594183742727782, 0.66832242621897235069686670292, 0.70181475319526073540770129858, 0.77105249181775731605265546194, 0.78358928242562494509975653641, 0.795056512642020629885345788155, 0.814543577406772891704453398776, 0.815750279121388337909963361285, 0.905971922826405355903103998532, 0.942150851897989654065633968903, 1.07551611303513596067166678743, 1.09212850668704230254950859038, 1.17768351112663763186241676015, 1.25575362270486390265670674630, 1.29159883436679084329789261202, 1.33773511231653310813865059051, 1.43037872556857910893514857325, 1.45562218232704193621540482917, 1.45751313645617828397654049947, 1.58919346438634634828461735723, 1.61179772260006406098153003669, 1.65661580641095062242087669628, 1.85532721287296615303300038292

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.