Properties

Label 2-3675-3.2-c0-0-5
Degree $2$
Conductor $3675$
Sign $1$
Analytic cond. $1.83406$
Root an. cond. $1.35427$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4-s + 9-s − 12-s + 13-s + 16-s − 19-s − 27-s + 2·31-s + 36-s + 37-s − 39-s − 2·43-s − 48-s + 52-s + 57-s − 61-s + 64-s + 67-s + 73-s − 76-s − 79-s + 81-s − 2·93-s + 97-s + 103-s − 108-s + ⋯
L(s)  = 1  − 3-s + 4-s + 9-s − 12-s + 13-s + 16-s − 19-s − 27-s + 2·31-s + 36-s + 37-s − 39-s − 2·43-s − 48-s + 52-s + 57-s − 61-s + 64-s + 67-s + 73-s − 76-s − 79-s + 81-s − 2·93-s + 97-s + 103-s − 108-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3675\)    =    \(3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1.83406\)
Root analytic conductor: \(1.35427\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{3675} (1226, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3675,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.282204710\)
\(L(\frac12)\) \(\approx\) \(1.282204710\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
good2 \( ( 1 - T )( 1 + T ) \)
11 \( ( 1 - T )( 1 + T ) \)
13 \( 1 - T + T^{2} \)
17 \( ( 1 - T )( 1 + T ) \)
19 \( 1 + T + T^{2} \)
23 \( ( 1 - T )( 1 + T ) \)
29 \( ( 1 - T )( 1 + T ) \)
31 \( ( 1 - T )^{2} \)
37 \( 1 - T + T^{2} \)
41 \( ( 1 - T )( 1 + T ) \)
43 \( ( 1 + T )^{2} \)
47 \( ( 1 - T )( 1 + T ) \)
53 \( ( 1 - T )( 1 + T ) \)
59 \( ( 1 - T )( 1 + T ) \)
61 \( 1 + T + T^{2} \)
67 \( 1 - T + T^{2} \)
71 \( ( 1 - T )( 1 + T ) \)
73 \( 1 - T + T^{2} \)
79 \( 1 + T + T^{2} \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( ( 1 - T )( 1 + T ) \)
97 \( 1 - T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.499306569586201366138439303003, −7.938458253722916383846494265379, −6.97326937482390733319971681938, −6.35849549006967619998896852609, −6.03713792857122492235401455007, −5.01709101530938927610726815004, −4.19059701459342361384242528861, −3.20588321916529463906746644794, −2.07714338457109125094014824947, −1.08755182860160023856190543335, 1.08755182860160023856190543335, 2.07714338457109125094014824947, 3.20588321916529463906746644794, 4.19059701459342361384242528861, 5.01709101530938927610726815004, 6.03713792857122492235401455007, 6.35849549006967619998896852609, 6.97326937482390733319971681938, 7.938458253722916383846494265379, 8.499306569586201366138439303003

Graph of the $Z$-function along the critical line