| L(s) = 1 | + (0.965 + 0.258i)3-s + (−0.866 + 0.5i)4-s + (0.866 + 0.499i)9-s + (−0.965 + 0.258i)12-s + (−0.707 + 0.707i)13-s + (0.499 − 0.866i)16-s + (−0.866 + 1.5i)19-s + (0.707 + 0.707i)27-s − 36-s + (0.448 + 1.67i)37-s + (−0.866 + 0.500i)39-s + (0.707 − 0.707i)48-s + (0.258 − 0.965i)52-s + (−1.22 + 1.22i)57-s + (1.5 + 0.866i)61-s + ⋯ |
| L(s) = 1 | + (0.965 + 0.258i)3-s + (−0.866 + 0.5i)4-s + (0.866 + 0.499i)9-s + (−0.965 + 0.258i)12-s + (−0.707 + 0.707i)13-s + (0.499 − 0.866i)16-s + (−0.866 + 1.5i)19-s + (0.707 + 0.707i)27-s − 36-s + (0.448 + 1.67i)37-s + (−0.866 + 0.500i)39-s + (0.707 − 0.707i)48-s + (0.258 − 0.965i)52-s + (−1.22 + 1.22i)57-s + (1.5 + 0.866i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.193 - 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.193 - 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.263706957\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.263706957\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (-0.965 - 0.258i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
| good | 2 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 17 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 19 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.448 - 1.67i)T + (-0.866 + 0.5i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 53 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (1.67 + 0.448i)T + (0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.965 + 0.258i)T + (0.866 + 0.5i)T^{2} \) |
| 79 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.712884685191409536985375974854, −8.371048602186860739496296743718, −7.65356145733996450840416983453, −6.94697749189251308125167624211, −5.88189506198397345035536874259, −4.78478164368481981431789141137, −4.28991555720789405356216645152, −3.54808640542475688959872520020, −2.68100766912975153095555963227, −1.61503739749990397508887998196,
0.66422596783113207668556116391, 2.04147857753441681615122307736, 2.87647462385648734453166396351, 3.91804962965775805254257061152, 4.60217595397053385247377368807, 5.38067579058960162890240395404, 6.33631070581481351965226516245, 7.18031035216958064346832685309, 7.85799027563540742231004120300, 8.656765066294601026614341664694