Properties

Label 2-3654-29.28-c1-0-69
Degree $2$
Conductor $3654$
Sign $-0.371 + 0.928i$
Analytic cond. $29.1773$
Root an. cond. $5.40160$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s + 4·5-s + 7-s + i·8-s − 4i·10-s − 5i·11-s − 13-s i·14-s + 16-s + 2i·17-s i·19-s − 4·20-s − 5·22-s + 23-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s + 1.78·5-s + 0.377·7-s + 0.353i·8-s − 1.26i·10-s − 1.50i·11-s − 0.277·13-s − 0.267i·14-s + 0.250·16-s + 0.485i·17-s − 0.229i·19-s − 0.894·20-s − 1.06·22-s + 0.208·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3654 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.371 + 0.928i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3654 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.371 + 0.928i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3654\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 29\)
Sign: $-0.371 + 0.928i$
Analytic conductor: \(29.1773\)
Root analytic conductor: \(5.40160\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3654} (2899, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3654,\ (\ :1/2),\ -0.371 + 0.928i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.500299870\)
\(L(\frac12)\) \(\approx\) \(2.500299870\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 \)
7 \( 1 - T \)
29 \( 1 + (5 + 2i)T \)
good5 \( 1 - 4T + 5T^{2} \)
11 \( 1 + 5iT - 11T^{2} \)
13 \( 1 + T + 13T^{2} \)
17 \( 1 - 2iT - 17T^{2} \)
19 \( 1 + iT - 19T^{2} \)
23 \( 1 - T + 23T^{2} \)
31 \( 1 + 10iT - 31T^{2} \)
37 \( 1 + 7iT - 37T^{2} \)
41 \( 1 - 41T^{2} \)
43 \( 1 + 4iT - 43T^{2} \)
47 \( 1 - 7iT - 47T^{2} \)
53 \( 1 + 9T + 53T^{2} \)
59 \( 1 + 5T + 59T^{2} \)
61 \( 1 - 61T^{2} \)
67 \( 1 - 13T + 67T^{2} \)
71 \( 1 - 8T + 71T^{2} \)
73 \( 1 - iT - 73T^{2} \)
79 \( 1 - 4iT - 79T^{2} \)
83 \( 1 + 9T + 83T^{2} \)
89 \( 1 - 6iT - 89T^{2} \)
97 \( 1 - 3iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.509856182947947856165146535538, −7.76607466250321713996276783752, −6.59254369422427419279060298915, −5.74363864478352164779678251273, −5.56983300410448900868099788985, −4.45309676060584793082531222732, −3.43111730382037521268894486502, −2.47389121392009059671106644378, −1.84281819775291011579260069246, −0.72533349942862686090242301488, 1.42845250353799179949477817195, 2.10191307280251548419552990276, 3.21184076511002297502060769383, 4.68897684148688601161253376848, 5.01780853996702247676875529556, 5.75009127488683462969562615599, 6.69390225430835546287573339799, 7.01617055520380168210634948251, 7.961403743963443736824398926331, 8.879759510491198384649807138671

Graph of the $Z$-function along the critical line