Properties

Label 2-3654-21.20-c1-0-11
Degree $2$
Conductor $3654$
Sign $0.150 - 0.988i$
Analytic cond. $29.1773$
Root an. cond. $5.40160$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s − 2.21·5-s + (2.36 − 1.18i)7-s + i·8-s + 2.21i·10-s + 4.88i·11-s + 0.107i·13-s + (−1.18 − 2.36i)14-s + 16-s + 0.672·17-s − 3.69i·19-s + 2.21·20-s + 4.88·22-s − 0.0322i·23-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s − 0.990·5-s + (0.894 − 0.447i)7-s + 0.353i·8-s + 0.700i·10-s + 1.47i·11-s + 0.0297i·13-s + (−0.316 − 0.632i)14-s + 0.250·16-s + 0.163·17-s − 0.848i·19-s + 0.495·20-s + 1.04·22-s − 0.00671i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3654 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.150 - 0.988i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3654 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.150 - 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3654\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 29\)
Sign: $0.150 - 0.988i$
Analytic conductor: \(29.1773\)
Root analytic conductor: \(5.40160\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3654} (755, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3654,\ (\ :1/2),\ 0.150 - 0.988i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6400221951\)
\(L(\frac12)\) \(\approx\) \(0.6400221951\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 \)
7 \( 1 + (-2.36 + 1.18i)T \)
29 \( 1 + iT \)
good5 \( 1 + 2.21T + 5T^{2} \)
11 \( 1 - 4.88iT - 11T^{2} \)
13 \( 1 - 0.107iT - 13T^{2} \)
17 \( 1 - 0.672T + 17T^{2} \)
19 \( 1 + 3.69iT - 19T^{2} \)
23 \( 1 + 0.0322iT - 23T^{2} \)
31 \( 1 - 2.41iT - 31T^{2} \)
37 \( 1 - 3.78T + 37T^{2} \)
41 \( 1 + 11.7T + 41T^{2} \)
43 \( 1 + 6.98T + 43T^{2} \)
47 \( 1 - 12.2T + 47T^{2} \)
53 \( 1 - 12.6iT - 53T^{2} \)
59 \( 1 + 14.9T + 59T^{2} \)
61 \( 1 + 4.53iT - 61T^{2} \)
67 \( 1 + 7.96T + 67T^{2} \)
71 \( 1 - 5.83iT - 71T^{2} \)
73 \( 1 + 0.289iT - 73T^{2} \)
79 \( 1 + 7.17T + 79T^{2} \)
83 \( 1 - 13.2T + 83T^{2} \)
89 \( 1 + 12.5T + 89T^{2} \)
97 \( 1 - 11.3iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.726688176754531778332776034830, −7.889368287107619829521155165321, −7.44514611337122321296533677302, −6.71614320950834628193055757219, −5.37901670888803257019022025700, −4.54219345752730421459694777685, −4.26761515448261854519130881797, −3.22989444127614941346870810578, −2.16515895680613670156985185221, −1.21472140078882607913698477045, 0.20711025613768204578544082130, 1.56089189915028061615544801188, 3.05401761560102677754779945156, 3.80251590374468625282573296725, 4.61339314682079073814358098474, 5.51478354419803496687854078103, 6.00648915809918534715273856212, 7.00398710400982285753390634089, 7.82947491719360577370490965375, 8.269673169599329633068622843966

Graph of the $Z$-function along the critical line